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Abstract

This paper discusses the Genetic Rule and Classi�er Construction Environment (GRaCCE),

which is an alternative to existing decision rule induction (DRI) algorithms. GRaCCE is a

multi-phase algorithm which uses evolutionary search to mine classi�cation rules from data.

The current implementation uses a genetic algorithm based 0/1 search to reduce the number

of features to a minimal set of features that make the most signi�cant contributions to the

classi�cation of the input data set. This feature selection increases the eÆciency of the rule

induction algorithm that follows. However, feature selection is shown to account for more

than 98 percent of the total execution time of GRaCCE on the tested data sets. The primary

objective of this research e�ort is to improve the overall performance of GRaCCE through the

application of parallel computing methods to the feature selection algorithm. The development

and implementation of a parallel feature selection algorithm is presented. The experiments

designed and used to test this parallel implementation are outlined followed by an analysis of

the results. The results of this thesis e�ort show clearly that GRaCCE is improved through the

use of parallel programming techniques.
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IMPLEMENTATION AND ANALYSIS OF THE PARALLEL GENETIC

RULE AND CLASSIFIER CONSTRUCTION ENVIRONMENT

1 Introduction

As computers get faster and faster they are used to generate more and more data for processing.

Automated tools are needed that can help in understanding these large volumes of data. One area of

automated processing of this voluminous data is called data mining. Similar to mining for gold in a

mountain, data mining is looking for those nuggets of information that make better sense of the data.

Techniques in data mining are being developed for use in many areas such as pattern recognition,

associations, change and anomaly detection, among others. Without some way of interpreting the

vast amounts of data, it is nearly useless to try due to lengthy computation time. Data mining tools

are developed to help in this interpretation and attempt to speed up the lengthy computations. The

general steps in a data mining algorithm are shown in Figure 1.

Data Sampling Preprocessing Data Reduction

Data MiningPerformance EvaluationVisualization of Results

Figure 1: General Algorithm for Data Mining

Due to the overwhelming size of some databases today, it is impractical to process them in their

entirety. Thus, some way of reducing the amount of information processed while attempting to

still maintain similar results is important. This process is called feature selection. In the pattern

recognition area, feature selection attempts to remove features from consideration that make little

or no contributions to distinguishing between classes in the data set.

Once data is selected for processing, a preprocessing routine may be required to translate the

1



data into a usable form for data mining or even to repair missing data. Care should be taken in

converting data from one context to another so that the impact from any added errors on later

results are as small as possible. Data reduction techniques may now be used to reduce the data to

a minimal set of features that directly contribute to classi�cations.

The data mining technique is applied to this minimal feature set to produce the classi�er rule

set. Once a rule set has been developed, it can be evaluated based on criteria such as percent

correct classi�cations versus mis-classi�cations. This testing should use samples that weren't used

in the generation of the rule set to check whether or not valid rules are generated. Finally, some

understandable presentation of these rules should be made to the user.

This thesis e�ort investigates one data mining tool and the use of parallel processing to improve its

performance. The tool used is the Genetic Rule and Classi�er Construction Environment (GRaCCE)

developed by Marmelstein [20] and is discussed in Section 2.2. The primary emphasis is to analyze

GRaCCE and re-implement portions of it in a parallel environment to increase its speed of execution.

The overall objectives of this thesis e�ort are as follows:

1. Port GRaCCE to run on the Linux [29] operating system,

2. Analyze serial GRaCCE's eÆciency and e�ectiveness for bottlenecks,

3. Re-implement any bottlenecked sections to improve eÆciency, and

4. Analyze the parallel code e�ects on performance.

The scope of this e�ort is limited to improvements in the computational performance relative

to wall clock time by parallel implementation of selected sections in GRaCCE. Other improvements

to the overall GRaCCE algorithm are beyond the scope of this e�ort and are not researched. The

approach taken is to analyze the serial GRaCCE code for sections that are ineÆcient and develop

a parallel design to improve the sections eÆciency. The resulting thesis is outlined in the following

section.

2



Outline of Thesis

The thesis begins with a general introduction of the topic areas involved followed by chapter two

which provides more speci�c background information on the main topic areas. The �rst section

is on data mining followed by information on the speci�c data mining tool used in this e�ort.

The next sections are on serial and parallel computing issues and performance evaluation metrics.

Chapter three discusses the methods used in the analysis of the serial code, the development of

the parallel code, and the testing required for analysis of any improvements. Chapter four presents

the data collected from the serial analysis to the parallel execution. Additionally, the e�ects of the

parallel implementation on performance is analysed versus the serial implementation. In chapter �ve

conclusions are made regarding any parallel improvements and recommendations for future e�orts.
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2 Background

With today's faster computers and larger hard drives, the amount of information available for

processing is continuously growing. A great deal of time and resources have gone into building

databases. As a database increases in size, however, it becomes increasingly diÆcult for an individual

to comprehend all of the data. For larger databases, some tools are needed to separate the gold

from the dross, in order to utilize the database to the greatest extent. Like mining for gold, data

mining is an approach used in the search for gold nuggets of information within the mountains of

data. This chapter discusses data mining, some methods used in data mining implementations, and

methods of improving data mining performance through parallel processing.

2.1 What is Data Mining?

Many of todays very large databases are not very useful unless the data can be grouped into mean-

ingful sub-sets [14]. This partitioning of the data in the database is known as classi�cation. The

particular form of classi�cation considered in this research is data mining. Data mining is a broad

term used to describe any process that seeks to uncover patterns, associations, changes, anomalies,

or statistically signi�cant partitions in data [20]. Traditional data analysis is performed manually

by developing a hypothesis and then testing to see if the data supports it. In contrast, data mining

is an automatic process that discovers useful patterns in the data and extracts them [12].

With the proli�c use of databases by many businesses, many data mining e�orts have a distinctly

commercial orientation [1]. However, there are many possible military applications with the growth

in the number and size of military databases. One such application is the augmentation of the

Observation, Orientation, Decision, and Action (OODA) loop shown in Figure 2. The OODA

loop is one of the most widely accepted models of the battle�eld decision process [27]. Today's

battle�elds are full of various data collection devices that collect vast amounts of information. This

information is gathered for processing with the hope that relevant information is presented to the

decision makers. Due to the large amounts of data and the timeliness required, data mining is a

good addition to the OODA orientation process. The many sensors gather the data which gets

stored in a database during the observation process. Next, data mining is applied to the collected
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Figure 2: Observation, Orientation, Decision, and Action Loop

data to detect emerging patterns or features that weren't previously known. These patterns can be

used to improve the data content provided to the commander for use in the decision process. One

improvement may be decreased processing time if data mining results show that built in classi�ers

can have the same (or better) performance with a reduced feature set. This reduction in feature set

size is called feature selection.

2.1.1 Feature Selection

Selecting features is an extremely diÆcult task, �lled with both theoretical and computational prob-

lems. An e�ective mathematical theory for feature selection seems achievable only for a narrow

specialization of the problem: linear transformations that reduce the dimensionality of the feature

space. The transformation is made with the assumption that data is drawn from a normal distribu-

tion [24].

From the standpoint of Bayesian decision rules, there are no bad features. One cannot improve

the performance of a Bayes classi�er by eliminating a feature, a property called monotonicity. How-
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ever, in practice the assumptions in the design of Bayes classi�ers are almost never valid. As a

consequence, it is possible to improve the performance of a non-ideal classi�er by deleting a feature.

Moreover, for a given amount of data, reducing the number of features increases the accuracy of

the classi�er's performance [24]. These two facts have tremendous consequences for computational

problems associated with feature selection.

While features within a data set provide the means for discriminating between classes [16],

too many features can degrade a system's ability to classify data [5]. One reason is the number

of samples required for training increases as the number of features and possible values for these

features increase, a phenomenon termed the \curse of dimensionality" [20, 4]. For a data set with d

features with M possible values for each feature, Md samples are required for training to truly be

e�ective. Additionally, not all features are e�ective in discriminating between classes. An example

data set with two classes is shown in Figure 3.

X

X

X

X

X

X

O

O O

O

O
O

x

y

Figure 3: Example of Samples in a Two Class Data Set

One way to �ght the curse of dimensionality is to reduce the feature set size. Given a data set

with d features and a desired subset of m features, how is the best subset found? An exhaustive

search would have to try
�
d
m

�
= d!

(d�m)!m! possibilities [28]. For example, given a data set with thirty-

�ve features and the best twenty are desired, an exhaustive search would have to test 183,579,396

possible combinations.

Due to the prohibitive time an exhaustive search would take, other methods of searching for
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feature subsets are required. Several approaches such as the Fischer Discriminant [9] (FD), feature

extraction using the Karhunen-Loeve (KL) transformation, and heuristic search using evolutionary

techniques are discussed in [20] in greater detail. The FD calculates the impact of the individual

features on the classi�cation but does not allow for combinations of features. The KL transformation

assumes that some function can be developed to transform the existing data set into another easier

to classify data set. The third method is to use a heuristic search such as genetic algorithms to �nd

a solution and is the method used by the software in this thesis e�ort.

2.2 Genetic Rule and Classi�er Construction Environment

GRaCCE is a data mining tool that uses evolutionary search techniques[19] to mine classi�cation

rules from the data it is given. It is similar to a pattern recognition algorithm, but goes beyond by

producing understandable rules used in the recognition. GRaCCE is designed for use with samples

in a vector form [20]. The individual elements in the vector are independent features which may be

real-valued or discrete. Getting data into this form is the primary goal of the �rst step in the data

mining process.

Once the data is in the proper form, GRaCCE can begin with a pre-processing phase that in-

cludes an optional feature selection operation and/or a mandatory winnowing operation. Winnowing

removes statistical outliers and duplicate samples resulting in classes of data that are linearly sep-

arable. GRaCCE then selects the relevant data sets for training through either a random sampling

of data or a cross-validation method. Next, it executes a data mining algorithm that can be viewed

as a combination of clustering and classi�cation, since it forms a classi�cation model of data based

on data attributes that include the clustering of class homogeneous regions. The steps that the data

mining algorithm follow sequentially are: partition generation, data set approximation, region iden-

ti�cation, region re�nement, and partition simpli�cation. Worst case analysis by section is shown in

Table 1, where n is the number of samples and d is the number of features. The results of the data

mining algorithm are �nally interpreted and evaluated through a listing of the partitions that form

these regions in the data. The overall process ow of GRaCCE is shown in Figure 4.
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Phase Complexity
Pre-processing - Feature Selection O(n4)
Pre-processing - Winnowing O(dn2d)
Partition Generation O(2(dn)2 + nd)
Data Set Approximation O(nlog(n))

Region Identi�cation O(qn2d3=2)
Region Re�nement O(dnlog(n))
Partition Simpli�cation O(d2n2log(n))

Table 1: Worst Case Time Complexity Analysis of GRaCCE

At the top level is the root GRaCCE process gracce. GRaCCE has three main modules at the

second level along with the load module. The load module is used to read in the test data set prior

to any of the other modules being called. The �rst of the three main modules is the feature selection

module. The other two modules are winnow and ruleInd. The rule induction module makes the

most extensive use of the rest of the GRaCCE code and calls the �ve modules at the base level in

Figure 4. The ga module provides method for both the feature selection routines along with the

region ID section of the rule induction phase.

2.2.1 Objective vs Fitness Structure

Most evolutionary computation (EC) algorithms require some form of encoding or mapping [3]

between the problem domain and the algorithm domain. The evolutionary operators, discussed

later, operate on these encoded structures sometimes called chromosomes. GRaCCE uses a binary

string representation for each population member with a length determined by the number of features

in the data set. Each feature is represented by a single binary digit. A one represents the feature is

present and a zero represents the feature is absent.

The �tness landscape [20] for an EC algorithm refers to the mapping between the genomes of

a population of individuals to their �tness and a graphical representation of that mapping. For

GRaCCE, each population member is evaluated using the objective function in the feature selection

code. The objective function performs a k-nearest neighbor (kNN) routine over a subset of the

data for each member in the population. The subset is determined by the bit representation of the

individual member. The complete objective function landscape for the Iris data set [6] is shown in

8



gracce

load featSel winnow ruleInd

gacommon results

partGen datApprx regionID regRe�n partSimp

Figure 4: GRaCCE C++ Call Graph

Figure 5. A partial objective landscape for the Wine data set is shown in Figure 6.

GRaCCE's �tness function receives the results of the objective function and then ranks the

members based on those results. The �tness function produces a rank ranging from zero to two

based on each members objective score relative to the whole population. The objective score for a

particular member does not change for the entire execution of the genetic algorithm (GA) as long

as its binary string remains unchanged. However, the �tness of that member is recalculated and

may change with each generation. An example of the �tness mapping is shown in Figure 7. This

ranking was produced using the second generation of the feature selection GA in GRaCCE with a

population size of forty.

2.3 Parallel Processing

Imagine a post oÆce in a large city with only one person responsible for processing all of the incoming

mail. This person takes stacks of mail and walks around to the di�erent bins. The person has to

9



Figure 5: Objective Landscape for the Iris Data Set
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Figure 6: Partial Objective Landscape for the Wine Data Set
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Figure 7: Example Fitness Landscape for the Iris Data Set
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sort the mail into the bins by ZIP code. A single person can only do this so fast. One way to speed

this up is to add another person to help. Working together they can sort the mail twice as fast. If

two more people are added, the mail is sorted at a rate four times as fast as a single person.

In addition to the rate at which the task is accomplished, other factors such as eÆciency can

a�ect overall performance. In the previous case, all the workers are walking around to all of the bins.

A more eÆcient method of splitting up the workload can be used. The total number of bins can be

divided among the workers. Each worker is then responsible for a smaller number of bins and takes

a portion of the incoming mail. This is an example of task partitioning or a divide-and-conquer

approach. The worker �les the mail that matches the workers' bins and passes non-matching mail

to the worker responsible for it. This cuts down on the amount of walking around that each worker

does.

This may, however, increase the eÆciency only to a certain point. If the workers are required to

verbally communicate when passing along mail to the responsible worker, this adds some commu-

nications overhead. As the number of workers increases, the communication burden gets larger. At
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some point, the communication requirement starts to dominate a workers' time. Adding even more

workers only makes the situation worse and performance can only decrease. If workers are added

beyond even this point, it could take them longer to sort the mail than it did for a single worker.

The mailroom analogy is similar to many computer programs. Computer programs often perform

the same task many times. Instead of adding workers, additional processors or computers can be

added to increase performance. For instance, the mailroom case is analogous to sorting routines

which vary in speed and eÆciency and sometimes bene�t from the addition of processors in parallel.

Two such parallel sorting algorithms [26] are:

1. Odd-Even Transposition with a worst case time of O(n) and

2. Shear Sort with a worst case time of O(n1=2logn).

How much performance increases is determined primarily by the amount of communications required

between processes. Two important measures of how well a program can be executed in parallel are

speed up and eÆciency.

2.3.1 Control Parallelism vs. Data Parallelism

Two major categories of parallel programming are data-parallel programming and control-parallel

programming [23]. Control-parallel algorithms can apply di�erent operations to di�erent data con-

currently. This is considered a pipelined approach and the data ow in this case can vary widely

in complexity. Any manufacturing assembly line is a good example of this type of parallelism. On

the other hand, data-parallel algorithms split the data among the di�erent nodes and apply the

same operations to that data. The operations on the data are typically independent and the com-

munication between nodes is much simpler than control-parallel algorithms. These di�erences in

operation and structure between parallel algorithms and their serial equivalents makes performance

much more diÆcult to measure.
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2.3.2 Measuring Performance

Parallel programs can't be evaluated in the same simple terms, such as execution time and input size,

used for a serial program. This is due to additional issues such as the use of multiple processors and

di�erent communication architectures. The combination of a program written for parallel execution

and a parallel architecture is known as a parallel system [18]. Once a program has been developed

or converted to run in a parallel environment, it must be tested using metrics that have meaning for

a parallel system.

Several metrics have been developed for parallel systems with the most common being the parallel

run-time (Tp). Tp is measured from the start of the program to the end of the last process. Tp is used

in the computation of other common parallel metrics such as speedup, eÆciency, and isoeÆciency.

These three metrics are discussed in the next three sections.

Speedup

Speedup is de�ned as \the ratio of the serial run time of the best sequential algorithm for solving

a problem to the time taken by the parallel algorithm to solve the same problem on p processors.

[18]" The speedup equation is

Speedup(S) =
Ts
Tp

(1)

where Ts is the best serial execution time and Tp is the parallel execution time. This metric provides

a basic measure of the gain in performance by parallelizing the algorithm.

In theory, the best speedup that can be obtained is a linear speedup [18]. Ideally, if a program

runs in time Ts on a single processor then it should run in time Ts=p on p processors. In reality,

this can never be achieved due to communications overhead required in the distribution of multiple

processes. A deceptive condition known as super-linear speedup occurs in which the observed parallel

speedup is greater than Ts=p. Unless there are no other constraints such as the serial algorithm is

memory bound, this really implies that the parallel algorithm is encoded more eÆciently and that
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the serial algorithm could be recoded to match. By itself, speedup doesn't provide a completely

accurate portrayal of the algorithm's performance.

EÆciency

A better understanding of the algorithm's performance is achieved by looking at the parallel al-

gorithm's eÆciency in addition to speedup. Although the speedup for a program may continue to

increase as processors are added this will eventually taper o�. This is a result of the parallel program

not getting one hundred percent of the processor's time as each node is added. This small percentage

of other tasks taking processor time adds up as nodes are added and causes the speedup to fall o�.

The eÆciency function, E, is

E =
S

p
=

Ts
pTp

(2)

where S is the speedup and p is the number of processors. This metric measures the bene�t of

adding more processors.

Due to the previously mentioned upper bound, p, of speedup, the eÆciency of a parallel program

will never exceed one. If the eÆciency can be maintained as processors are added and the program

is scaled accordingly, the program is said to be scalable.

IsoeÆciency

The rate at which the problem size has to be scaled as the processors are added to maintain a �xed

(iso) eÆciency is calculated by the isoeÆciency function is

W =
E

1�E
To(W; p) (3)

where W is the workload or problem size, E is the eÆciency, and T(o) is the parallel overhead. T(o)

is a function of the problem size and the number of processors used. The idea is to maintain the

same (iso) eÆciency as the number of processors changes.
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The main di�erence between the eÆciency function and the isoeÆciency function is that the

overhead of the parallelization is taken into account. The lower the value of the isoeÆciency function

the more scalable the program is. If however, a �xed eÆciency cannot be maintained regardless of

how fast the problem is scaled, the program is considered unscalable [18].

2.4 Summary

In this chapter, data mining, GRaCCE, and parallel processing were discussed. Data mining is im-

portant to the extraction of valuable information from increasingly large databases. The data mining

tool used in this thesis e�ort is GRaCCE and like other data mining tools, it might bene�t from a

parallel implementation. Finally, some considerations and characteristics of parallel programming

are discussed to provide background in parallel processing. The next chapter discusses design and

implementation issues that impact the development of a faster version of GRaCCE using parallel

computing.

15



3 Design and Implementation

The main emphasis of this thesis e�ort is to improve the performance of the GRaCCE algorithm

through use of parallel computing. The �rst steps in developing a parallel application are deciding on

what tools, languages, and computing platforms are used. Once these decisions are made, developing

the actual code commences. Given that this e�ort was provided a serial implementation of GRaCCE,

a parallel version was not built from scratch, but made use of the serial code.

With these steps in mind, the �rst design decision is easy. Having received the GRaCCE code

in C++ language, C++ is used since porting GRaCCE to another language is beyond the scope of

this e�ort and is probably a separate thesis in itself. The next design decision is based on computing

platform availability and control of the test environment. The Air Force Institute of Technology's

(AFIT) PC cluster is isolated from the outside world and is the best system available for development

and control of the parallel application test environment, therefore, it is chosen as the development

platform.

The choice of AFIT's PC cluster comes with some constraints. The �rst of which is the hardware

architecture, which is a cluster [7] of commodity PCs connected by an Ethernet communications bus

(see Appendix A. The second constraint is the operating system. The individual nodes in AFIT's

cluster are dual bootable under either Microsoft Windows 2000 or the Linux operating system. The

Linux operating system is chosen over Windows 2000 based on prior experience with Linux and the

cluster's history of greater stability and scalability under Linux.

Having made these choices the next steps are the analysis of the serial code, development of a

parallel approach, implementation of the parallel code, running a set of experiments on the parallel

implementation, and the analysis of the results. Within these steps it is important that the design

of the experiments and the resulting tests are made in accordance with the basic goals of the thesis

e�ort [8]. Along with identifying the desired goals, the means required to achieve them should also

be identi�ed. Additionally, any analysis of the experimental results must be suÆcient to justify the

claims made regarding the outcome [15]. Finally, any parameters that might inuence the testing

should be controlled as best as possible.
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In this chapter several implementation and testing issues are discussed in the following sections.

The �rst is the porting of the original C++ code to run on the Linux OS. Next is the performance

analysis of the serial GRaCCE program and the methods used in the analysis. The parallel imple-

mentation of the largest bottleneck in the GRaCCE code is third, followed by the test methodology

used to gather the data for analysis of this parallel implementation.

3.1 The Porting of GRaCCE

GRaCCE was originally developed by Marmelstein [20] using the Matlab environment. One draw-

back of Matlab is the slow speed at which the code executes. For this reason, Kinzig [16] ported

GRaCCE from Matlab into C++ using Microsoft's Visual C++ environment and staying as close

to the original Matlab code structure as possible. The idea is to provide C++ code structure that

is easy to follow for users who understand the Matlab version.

In order to port the Matlab code to C++ and still maintain similarity in matrix manipulation a

matrix library is used. This library is the Template Numerical Toolkit (TNT) [21] and is built using

C++ templates. TNT was developed and tested under Microsoft's Visual C++. Two additional

libraries are required for compilation of GRaCCE under either Windows or Linux and they are:

1. BLAS - a basic linear algebra library, and

2. LAPACK - a library of Fortran 77 subroutines for solving some of the most common linear

algebra problems and is an extension of the BLAS.

Version 3.0-8 of both BLAS and LAPACK are used to develop the Linux version of GRaCCE.

To fully utilize the nodes in AFIT's PC cluster, Kinzig's C++ code is ported to run under Linux

and the GNU compiler suite. One element employed by the TNT library that is unsupported by the

current stable release of the GNU C++ compiler is the passing of a function in the parameter list

of the map procedure call. To correct this problem, separate individual procedures are written for

each of the di�erent functions. The GNU (recursive acronym meaning "GNU's Not Unix") compiler

suite is used in the development of the Linux port of the C++ version of GRaCCE. The version

of the GNU compiler suite on the AFIT cluster is egcs-2.91.66. As an alternative, the Portland
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Group (PG) compiler suite is also available on the AFIT cluster for code development. However,

the decision to use the GNU suite over the PG suite is based on familiarity with the GNU suite

and because the GNU compiler reported fewer warnings and errors in the �rst attempts to port

GRaCCE to Linux.

3.2 Serial Performance Analysis

Once the port to Linux is complete, its performance is analyzed. The code itself has timing mea-

surements within it. GRaCCE makes system calls to the clock() subroutine at the start of a routine

and again at the end of a routine. The di�erence is noted in seconds as the time required to execute

the routine. These measurements are discussed in greater detail in [16] and are used to show the

length of time required to execute the various sections of the GRaCCE code. The section requiring

the greatest time, 98.9% of total execution time based on the Iris data set results shown in Table 2

is the feature selection routine. Due to the signi�cant amount of time required for feature selection,

it was chosen as the code segment to be implemented in parallel.

Iris Data Set on a 266MHz Pentium II
Mean Std Dev Percentage

Feature Selection 289s 6.3s 98.9
Winnowing 0.63s 0.01s .22
Rule Induction 2.56s 0.09s .88
Total 292.19

Table 2: Serial Runtime of Iris Data Set

In order to get a better understanding of where the main bottleneck occurs in the feature selection

routine, a pro�ling tool is used. Most compilers have pro�ling tools associated with them and are

linked closely together. Pro�lers insert extra code into a program when it is compiled. This extra

code generates a log �le for a post mortem analysis. In this case, the GNU compiler suite comes with

a pro�ler called gprof. Pro�ling is invoked by adding a command line parameter to the compiler

invocation used to compile the code. The additional command is -gp and is placed anywhere after

the gcc or g++ compiler command.
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3.2.1 Baseline Data Sets

A number of data sets are available for testing of classi�er systems and a sampling of some of them

are shown in Table 3. The Iris, Wine, Glass and Cancer data sets are chosen based on di�erent

sample and feature sizes. These data sets are timed using the serial version of GRaCCE on the

di�erent processor speeds available in the AFIT cluster. This establishes the baseline for analyzing

any improvements made by parallelizing the GRaCCE code.

Number of
Data Set Samples Classes Features

Iris 150 3 4
Wine 178 3 13
Glass 214 6 9

Soybean 683 19 35
Cancer 699 2 9
Iono 351 2 34
Pima 768 2 8
Scud 1000 2 6

Mushroom 8124 2 22

Table 3: Sample Data Sets

3.3 Parallel Implementation

Once the serial bottlenecks are determined, the modi�cations to the serial code with the greatest per-

formance impact is implemented in parallel. Several tools are available for implementing GRaCCE in

a parallel environment. Some of these possibilities [22] are the parallel virtual machine (PVM), high

performance FORTRAN (HPF), the Local Area Multicomputer (LAM), and the message passing

interface (MPI).

The idea behind PVM is to provide a uni�ed framework within which parallel applications can be

developed in an eÆcient and straightforward manner using existing hardware. Ideally, a collection

of heterogeneous computers looks like one big parallel virtual machine [11]. PVM takes care of all

the message passing, task scheduling and other tasks required to maintain the parallel environment

without getting the user involved in the details.

LAM stands for local area machine and implements a lower level abstraction of the interconnec-
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tions between the individual nodes than PVM. The user is much more aware that the environment

is composed of multiple computers. The communications mechanism underlying LAM uses the

message massing interface (MPI) standard [10].

The libraries used to implement the parallel GRaCCE code is MPICH version 1.2.0 which is a

MPI standard implementation by Argonne National Laboratories. In order to ensure comparable

results, the testing of this modi�cation uses the same data sets used by the serial code. Additionally,

program traces of execution of both the serial and the parallel algorithms are checked against each

other to ensure proper execution of the parallel algorithm.

3.4 Testing the Parallel Implementation

After the parallel version of GRaCCE is implemented, several experiments are run. The �rst is to

validate the correct execution of GRaCCE. This is accomplished by ensuring the output of both the

serial and the parallel versions are the same. It is important to check not only the �nal reduced

feature set that is produced but also proper execution throughout the entire test run.

Once the correct execution is validated, the parallel implementation is tested and analysed using

the metrics discussed in section 2.3.2. This is accomplished by executing the parallel implementation

on a multiple numbers of nodes. For this e�ort, the number of nodes used are two, three, four, �ve,

ten, �fteen, and twenty. This number of nodes provides enough data points for analyzing the

performance di�erences between the serial and the parallel implementations. Each set of runs are

executed multiple times in the same con�guration to allow for a statistical analysis of the results

such as the mean execution time and the standard deviation of the results. The results of these tests

are also analysed using the metrics discussed previously in section 2.3.2.

3.5 Modi�cations for Heterogeneous Environments

The initial parallel implementation of GRaCCE assumes a homogeneous cluster environment. This

allows parallelization of the code, but overall performance is as if all of the nodes are the same as the

slowest node used. Due to the heterogeneous nature of the AFIT cluster, additional modi�cations
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are made to gain some performance improvements over the homogeneous implementation.

In order to take the heterogeneous nature of AFIT's cluster into account during program execu-

tion, some method of detecting system parameters is required. In this case, each node accesses the

/proc/cpuinfo �le which contains system speci�c information regarding the nodes processor. The

�le is searched for the processors bogomips rating. This number is directly related to the processor's

clock speed and is easily accessible.

Other measures of performance such as those provided by HINT [13] are available. HINT is

required to run a priori and produces a QUIPS rating which stands for quality instructions per

second. The overall rating is based on a suite of tests that report performance related to CPU

speed, cache size and speed, and bus speed, among other parameters. The QUIPS rating can be

stored in a lookup table for a node to check what its rating is. ATLAS, on the other hand, stands

for automatically tuned linear algebra system and continually updates its system performance value

as it is executed. Both of these metrics are more tailored to systems that are more fully loaded in

both computational and memory requirements. Due to GRaCCE's minimal memory requirements,

the Bogomips rating is suÆcient since it is more directly related to processor speed than the overall

performance of a fully loaded system.

3.6 Control of the Environment

The AFIT cluster operates in an isolated environment. No outside connections to other networks

are currently permitted so interference from outside network traÆc is nonexistant. The network

communications required by the parallel implementation of GRaCCE is very minimal. The initial

distribution of the complete data set is the most time consuming and is considered negligible when

compared to the overall GRaCCE feature selection time. All other communications are small n x

m byte vectors between the root and other nodes where n is the size of the population in the GA

and m is the number of features in the data set. Due to the small communications requirements,

other parallel applications were permitted concurrent execution on the cluster with little e�ect on

the timing results for GRaCCE.
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Additional care is taken to ensure a minimal number of operating system processes are running in

the background. None of the nodes used in timing GRaCCE have graphical windowing environments

running during testing. The only other system processes enabled are those required for cluster

operation such as the network �le system (NFS) which provides the remote �le system between

nodes.

3.7 Summary

In this chapter, design and implementation issues concerning the development of the parallel GRaCCE

code are discussed along with tests required to produce the data for analysis of the resulting code.

The porting of the Microsoft Visual C++ version of GRaCCE to compile under the GNU compiler

suite is at the beginning of the chapter. This is followed by the methods that are used to analyze the

serial version of GRaCCE once ported. Next, some parallel implementation issues a�ecting a parallel

version of GRaCCE are discussed, such as parallel environments and how to test the resulting paral-

lel code. The chapter is concluded with a discussion of the controlled PC cluster environment used

in development and testing of the parallel GRaCCE. The next chapter covers the choices actually

made, implemented, and the results.
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4 Results and Analysis

This chapter presents the design of the experiments along with the results and analysis of those

experiments. The design of experiments entails stating the objectives of the experiments, identifying

any inuential factors on the experiments, what speci�c characteristics are to be measured and how,

as well as the number of repetitions of the experiments [17].

Once the experiments are made, an objective of this chapter is to present the data gathered in

a manner that is easily understood. The initial results are for the serial analysis of the GRaCCE

port to Linux. This is followed by the implementation decisions made and why. The data collected

based on that implementation is then presented. Next is an analysis of the parallel metrics based on

the test results. The chapter is concluded by a discussion of the di�erence in performance between

the homogeneous approach and a simple heterogeneous approach.

4.1 Serial Performance Analysis

Once the port to Linux is complete its performance is analyzed. The code itself has some timing

measurements written within it and these measurements are discussed in greater detail in [16]. For

an initial analysis, these measurements are used to show the length of time required to execute the

various sections of the GRaCCE code. The timing measurements are made based on GRaCCE's

menu which has four possible selections, as follows:

1. Winnowing Phase,

2. Feature Selection,

3. Rule Induction Phase, and

4. Exit.

These choices correspond to the three main modules shown in Figure 4. The Winnowing Phase

winnows the original data set by removing duplicate entries and entries with missing data. The

Feature Selection (FS) routine is set to use the GA method of feature selection. The other two

methods, which are a depth �rst search (DFS) and a hybrid DFS-GA approach, were not used in
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this analysis. The GA method for FS is used because it is the most time consuming of the three

methods [16].

The Rule Induction Phase consists of the following six algorithms, each of which are individually

timed:

1. Dividing Data,

2. Partition Generation,

3. Data Approximation,

4. Region Identi�cation,

5. Region Re�nement, and

6. Partition Simpli�cation.

The individual times are summed together for a total rule induction phase time.

Based on the three GRaCCE menu selections, the section requiring the greatest amount of the

total execution time is feature selection. As can be seen in Figure 8, the feature selection dominates

the overall GRaCCE execution time. In fact, the timing of GRaCCE execution using the Iris data

set resulted in the feature selection taking ninety-nine percent of the total execution time for all

three parts.

With the signi�cant amount of time required for feature selection, it was chosen as the target

for further analysis.

4.1.1 Serial Execution Pro�ling

Once the feature selection part of GRaCCE is chosen, more detailed analysis of the code is required

to narrow down the location of the major bottlenecks. For this, the GNU pro�ling tool gprof is used.

In order to use gprof, GRaCCE is recompiled with the compiler ag '-pg' added to the compiler

command line. This inserts the pro�ling code that is used to log the program execution.

After compiling GRaCCE with the pro�ling ag, it is run with only the FS option chosen. Gprof

is only used on the FS routine using the Iris data set due to the considerable overhead pro�ling adds.
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Figure 8: Serial GRaCCE Timing

What normally took a couple of minutes to execute, required several hours with the added pro�ling

overhead. With the pro�ling added, execution of GRaCCE creates a log �le called gmon.out. The

log �le contains information pertaining to only those sections of GRaCCE that actually get executed

during the run. Because only FS is chosen, no output is generated for the winnowing or rule induction

phases.

Once the log �le is made, the actual gprof program is called to interpret the results. Gprof is

invoked with the following command line:

gprof OPTIONS executable logfile

Gprof prints a at pro�le and a call graph. A short section of the GRaCCE at pro�le with just

the important lines extracted pertaining to is shown in Figure 9 with a much larger section of the

output in the Appendixes. Appendix C contains the at pro�le output and Appendix D contains

the call graph output. One should note the large percentage of time that the program is executing

in the TNT library. A large performance improvement could be made with a more eÆcient matrix

library.

The FS structure of GRaCCE can be seen in Figure 9 by moving from the bottom line back

up to the top line. At program start, FS is selected from the menu which calls gracce fsel. Next,
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Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

3.29 64.40 3.86 28500 0.14 4.10 sortbydist2(bool, ...

0.09 117.04 0.11 190 0.58 617.69 knn2(unsigned int, ...

0.00 117.42 0.00 21 0.00 5589.63 objfun2(unsigned int, ...

0.00 117.42 0.00 1 0.00 117417.65 ga_fs01(unsigned int, ...

0.00 117.42 0.00 1 0.00 117417.65 gracce_exop(void)

0.00 117.42 0.00 1 0.00 117417.65 gracce_fsel(void)

Figure 9: Signi�cant Pro�ler Lines for GRaCCE

gracce exop is called which in turn calls gafs01, the strictly GA method of feature selection. As can

be seen, these three calls are made only once during the program execution.

The ga fs01 routine, however, makes a total of twenty-one calls to objfun2. This number is

directly related to the population size of the GA. There is one initial call to the objective (or �tness)

function and then a call for every generation. For this testing the population size is set to ten and

the GA runs for twenty generations. The total is twenty-one calls to the objective function as can

be seen in Figure 9.

Next, for each member of the population that it receives, objfun2 calls the knn function, which is

a k nearest neighbor algorithm. So how does the total number of calls to kNN come out to 190? This

introduces a quirk noticed during analysis but which doesn't a�ect the results when compared to the

original Windows C++ implementation. With a population size of ten the actual execution shows

that the initial call to objfun2 passes a population of size ten and then each subsequent generation

passes a population of only nine members. This explains how the total number of calls to kNN

comes out to 190. Finally, sortbydist2 is called 150 times for each call to kNN which corresponds to

the number of sample vectors in the iris data set.

4.1.2 Serial Timing Baseline

Before going to the next step of implementing a parallel version of GRaCCE, a baseline is needed

for comparing with the parallel implementation. Several di�erent data sets were chosen for testing

and their characteristics were previously shown in Table 3. The timing results for several of these

data sets using the serial version of GRaCCE on PCs with di�erent processor speeds is shown in
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Table 4.

333 MHz 400 MHz

Mean (s) Median (s) StdDev (s) Mean (s) Median (s) StdDev (s)

Iris 217 217 3.57 182 182 3.16

Wine 330 332 9.50 275 274 10.7

Glass 469 472 12.1 392 391 7.03

Cancer 4663 4645 103 3888 2883 67

600 MHz 933 MHz

Mean (s) Median (s) StdDev (s) Mean (s) Median (s) StdDev (s)

Iris 121 121 1.48 77.5 77.5 1.04

Wine 185 187 4.47 117 117 3.64

Glass 264 266 7.12 166 166 2.82

Cancer 2535 2520 53 1723 1717 31.0

1000 MHz

Mean (s) Median (s) StdDev (s)

Iris 72.4 72.9 1.05

Wine 111 111 2.64

Glass 157 159 3.37

Cancer 1615 1611 27.5

Table 4: Serial Execution Baselines by Processor Speed

4.2 Parallel Implementation

Once the decision is made to parallelize the objective function within the feature selection GA, the

serial code was modi�ed using the MPICH library functions. The GA internal operation is shown

in Figure 10. The �rst design decision is to minimize the amount of code nodes other than the

root node are required to run. With MPI, every node executes the same code starting from the

initialization point. Since only a small section of the feature selection GA is executed in parallel,

this is the only necessary code for each non-root node. Minimizing the amount of processing each

node does before reaching the objective function is accomplished by placing an if statement around

the original code in the gracce.cpp �le. If the process is root, then it executes all of the GRaCCE

code. If not root, then each node starts executing only after the root process calls the objective

function.

Next, the common data required by all nodes is sent out by the root node to all other nodes. The

method used to accomplish this is the MPI :: COMM WORLD:Bcast() method which is a one to
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Figure 10: Feature Selection Genetic Algorithm

all broadcast and is more eÆcient than the root node sending all the data to each node individually

[25]. The main broadcast at this point is the complete sample data set that gets sent to all nodes

when the data set is loaded in from its �le. A few other global system variables are also broadcast

at this time. Accomplishing this at start-up reduces the communications burden in the following

iterative sections of the GA.

At this point it is necessary to decide upon the approach used to parallelize the objective function

internals. Two approaches are considered:

1. Parallelize the k-nearest-neighbor (kNN) algorithm used to evaluate each population member,

and

2. Spread the population members out to the nodes for concurrent processing.

The selected approach is taken based on the iterative nature of the objective function. The

objective function calls the kNN algorithm for each member in the population. The �rst approach

results in iteratively calling a parallel kNN for each member. The second approach results an a

parallel distribution of the population to individual nodes that run the kNN algorithm sequentially.

The di�erence is shown in Figure 11.
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Figure 11: Possible Parallel Objective Function Approaches

The �rst method is much more complicated than the second method in that the kNN algorithm

has to be rewritten. Additionally, the �rst method requires more communications and thus has a

greater parallelization overhead. The second method does not require recoding of the kNN algorithm

and in fact requires very little modi�cation of the GRaCCE code. Based on this, the second method

is chosen.

Using the second method, when the objective function is called the root node �rst sends out all

common data to the other nodes by calling the MPI :: COMM WORLD:Bcast() function for all

necessary items. This amounts to a couple of integer values and a couple of vectors containing the

population members. Once the data is received, each node's processing is completely independent

of the other nodes. Each node then executes the objective function concurrently on the population

members it is responsible for without any further communication between nodes. When each node is

�nished it sends the results it calculated back to the root node which puts all of the results together

and returns from the objective function call.

One important consideration regarding the AFIT cluster is the heterogeneous nodes. This can

cause problems when using MPI as the communications mechanism. The MPI function calls time out

and exit with errors if they have to wait too long for the matching call in another node. Normally, on
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a homogeneous system, an implementation such as this one is not a problem due to all of the nodes

will �nish the kNN algorithm at nearly the same time. However, in a heterogeneous environment,

a processor that is twice as fast as another node �nishes its work in roughly half the time. If this

di�erence is large enough the MPI calls will time out.

In order to alleviate this problem, all nodes are required to wait at a MPI :: COMM WORLD:

Barrier() call before sending their results back to the root node. This allows di�erent speed pro-

cessors to be used without the MPI :: COMM WORLD:Send() calls timing out and generating

error messages if not actually crashing the execution.

Now that the objective function is implemented, it's time to test how eÆcient it is. With a serial

baseline for comparison, the parallel version of GRaCCE's timing results are gathered and analysed.

The root processor for the parallel testing on up to twenty nodes is chosen to be one of the 333 MHz

computers. With the MPI Barriers in the GRaCCE code this provides the appearance of a cluster

of homogeneous 333 MHz processors.

The results of testing the parallel implementation of GRaCCE using the Iris data set are shown

in Figure 12. The results are shown for �ve, ten, �fteen, and twenty processors along with the

original timing of the serial version of GRaCCE, As expected the time required for feature selection

decreases as processors are added. However, it is noted that there is an exception to this between

ten and �fteen processors. The di�erence between the mean execution time of the ten and �fteen

processors is statistically insigni�cant. This is explained later in this section.

The results for the tests using the Wine, Glass, and Cancer data sets are shown in Figures 13,

14, and 15 respectively. All of the �gures have similar results, with only the length of time scaled

between them. The corresponding plots of speedup and eÆciency for the data sets tested are shown

in Figures 16 and 17. The isoeÆciency is not calculated for reasons stated in [14], the primary one

essentially concluding that GRaCCE's stochastic nature tends to make the isoeÆciency calculations

meaningless. For instance, two data sets of the same size may have signi�cantly di�erent eÆciencies

due to the stochastic nature of the search space.

Fifteen processors showed no gain in speedup or eÆciency over ten processors because of the

30



Figure 12: Iris Data Set Test Results
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Figure 14: Glass Data Set Test Results
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Figure 15: Cancer Data Set Test Results
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Figure 16: Speedup
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Figure 17: EÆciency
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algorithm used to distribute the workload and the treatment of the AFIT cluster as a set of homo-

geneous systems. The results are based on a population size of twenty. Thus if two processors are

used each one gets ten members to evaluate. With �ve processors, each one gets four members to

evaluate and with ten processors, each node gets two members to evaluate.

However, with �fteen processors the workload cannot be evenly divided among the nodes. Some

of the nodes get two members and some get only one member. By treating the whole cluster as a

set of similar nodes the end result is the total time is set by the nodes that receive two members to

evaluate. This results in the same statistical performance achieved by the ten processor case.

This is further demonstrated by Figure 18. This set of data is collected on a set of �ve homoge-

neous 1GHz computers. The population size of the GA is varied from one to twenty members and

the number of processors is varied from two to �ve. A clear stair-stepping is seen in the results.

The stair-stepping is not perfect due to the algorithm MPICH uses to allocated the processes to

processors. However, the results are consistent and the stair-stepping pattern is the same for each

of the ten runs made during testing.

With the results of these tests on the parallel implementation of the objective function, the

population size should be made an integer multiple of the number of processors used. At integer
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Figure 18: Iris with Multiple Populations
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multiples, all of the processors are fully utilized. Anything other than an integer multiple results in

idle processors and less eÆcient performance.

4.3 Heterogeneous Environments

An additional modi�cation to the parallel implementation is made to allow a better utilization of

the processing nodes, taking into account the heterogeneous nature of the AFIT cluster. First, each

parallel process is enabled to open the /proc/cpuinfo �le and then to �nd and read in the bogomips

rating for the node it is executing on. Each node reports this value to the root processor. The root

processor sorts the nodes by this value and assigns work starting with the fastest node �rst. The

algorithm starts at one and increments until the population size is reached. At each increment it

adds one to the node it is at and then moves to the next one in a ring type manner.

Even with such a simple fastest-�rst algorithm, a clear improvement, see Figure 19, in execution

time is gained over treating the nodes as homogeneous. This holds except for certain population

sizes, where the slowesr processors are required. The test setup uses two 333MHz computers, two

450MHz computers and a 933MHz computer. All of the test runs are started with the root node on

one of the 333MHz computers. This constrains the homogeneous code to always assigning work to
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Figure 19: E�ects of Heterogeneous Algorithm
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the slowest computers �rst. With the heterogeneous sorting of the nodes, the root node will assign

work to the fastest nodes �rst, even if that results in the root node remaining idle.

4.4 Summary

In this chapter, the parallel improvement to GRaCCE is developed with the resulting implementation

tested and analyzed. First is the analysis of the serial GRaCCE code targeting any performance

bottlenecks in the code. Parallel improvements are explored and the decision to implement a parallel

objective function is made. Implementation issues are then discussed followed by the test and analysis

of the implementation that is chosen. The �nal conclusions drawn from the developed code and the

experiments on it are made in the following chapter.
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5 Conclusions and Recommendations

This chapter presents a summary of this thesis e�ort. The signi�cant contributions of this e�ort

are presented and recommendations on future research are provided.

5.1 Summary

Following a brief introduction, Chapter 2 provides a more detailed explanation of data mining and its

importance to extracting \the golden nuggets" of information from today's ever growing databases.

This is followed by an introduction and description of the genetic rule and classi�er construction

environment (GRaCCE). Chapter 2 concludes with a discussion of important parallel computing

issues from design considerations to performance metrics.

Chapter 3 presents design and implementation issues relating to this thesis e�ort. First is the

consideration of the hardware, software and operating system to use for this e�ort and the im-

pacts of those decisions. The issues for analyzing the serial version of GRaCCE are presented next,

followed by parallel design, implementation and testing issues. The chapter concludes with a discus-

sion of di�erences between heterogeneous and homogeneous architectures and environmental control

considerations.

Chapter 4 details the results and analysis of design and implementation decisions made through-

out this e�ort. The serial analysis points to a signi�cant bottleneck in GRaCCE's feature selection

(FS) routines. This is further narrowed down to the objective function within the genetic algorithm.

Testing of the serial version also provides a baseline for comparison against any changes in the code.

Implementation issues are discussed, followed by experimental test and analysis of the implemen-

tation decided upon. The conclusions made regarding the results of this e�ort are in the following

section.

5.2 Conclusions

This thesis e�ort shows that modi�cation of GRaCCE, through the implementation of part of its code

in parallel, results in a clear improvement in eÆciency and speed of execution. The section of code

chosen is Feature Selection due to its disproportionate execution time relative to other functions
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of GRaCCE. The results clearly show that the parallel implementation of GRaCCE achieves the

highest speedup and eÆciency when the population size, of the genetic algorithm (GA) used, is

an integer multiple of the number of nodes. At integer multiples, the speedup achieved is within

twenty-�ve percent of perfect linear speed-up.

Additional performance is gained by taking into consideration the heterogeneous nodes in the

cluster. Treating the computational nodes as homogeneous results in all nodes constrained to the

poorest performer in the group. Ideally, to get better performance, faster nodes should get a greater

workload. As a simple test case, the load distribution algorithm in the feature selection GA is

modi�ed. The original algorithm divies out the population members like cards in a poker game,

until all members are assigned. The arrangement of the nodes is based on the order in which the

nodes are initialized by MPI. The new heterogeneous algorithm sorts the nodes by bogomips value,

and then divies the population out by assigning members to the fastest nodes �rst. This simple

change in workload assignment results in a clear improvement, in both speedup and eÆciency, over

the homogeneous algorithm.

5.3 Recommendations

Based on the results of this thesis e�ort, the following are recommendations for additional research

using the parallel implementation of GRaCCE.

1. With faster feature selection now available, data sets with a higher number of features can be

tested in less time than the serial version of GRaCCE. Additional data sets should be analysed

with respect to the impact of reduced feature sets versus the whole feature set.

2. Comparative analysis of feature selection using the genetic algorithm method and the other

two feature selection methods of GRaCCE. The analysis could include the quality of solution

versus execution time to determine relative rates of convergance to a solution.

3. Analysis of the genetic algorithm's performance while varying its di�erent parameters such as

mutation, crossover, and selection rates.
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4. Develop a more complex algorithm for distribution of the workload in a heterogeneous en-

vironment. Distribution could be scaled according to relative di�erences in processor speeds

rather than just the fastest �rst.

5. Due to the considerable amount of time spent in the Template Numerical Toolkit, conversion

of GRaCCE to a more eÆcient matrix library would improve performance.

6. The objective function would also bene�t considerably from the use of a more eÆcient cluster-

ing algorithm than the k-nearest-neighbor algorithm. At the least, converting the sort within

the sortbydist2 module from a n2 to a nlogn algorithm will improve overall feature selection

eÆciency.
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A AFIT Cluster of PCs

Hostname processor

Physical
RAM
(MB)

Network
speed
(Mb/s) OS 1 OS 2 ip addr np

Win2000
dual Pentium III

Xeon 550 784 1000 W2k 172.8.0.1 2
Linstar dual Pentium III 600 512 1000 RH6.2 172.8.0.2 2
abc-a3 Pentium III 600 384 1000 RH6.1 W2k 172.8.0.3 1
abc-a4 Pentium III 600 384 1000 RH6.1 W2k 172.8.0.4 1
abc-a5 Pentium III 600 384 1000 RH6.2 W2k 172.8.0.5 1
abc-b5 Pentium III 600 384 100 RH6.1 W2k 172.8.1.5 1
abc-b6 Pentium III 600 384 100 RH6.1 W2k 172.8.1.6 1
abc-b7 Pentium III 600 384 100 RH6.1 W2k 172.8.1.7 1
abc-b8 Pentium III 600 384 100 RH6.1 W2k 172.8.1.8 1
abc-b9 Pentium III 600 384 100 RH6.1 W2k 172.8.1.9 1
abc-b10 Pentium II 400 256 100 RH6.1 172.8.1.10 1
abc-b11 Pentium II 400 256 100 RH6.1 172.8.1.11 1
abc-b12 Pentium II 400 256 100 RH6.1 172.8.1.12 1
abc-b13 Pentium II 333 256 100 RH6.1 172.8.1.13 1
abc-b14 Pentium II 400 128 100 RH6.1 172.8.1.14 1
abc-b15 Pentium II 450 256 100 RH6.1 172.8.1.15 1
abc-b16 Pentium II 400 128 100 RH6.1 172.8.1.16 1
abc-b17 Pentium II 400 128 100 RH6.1 172.8.1.17 1
abc-b18 Pentium II 333 128 100 RH6.2 172.8.1.18 1
abc-b19 Pentium II 333 128 100 RH6.2 172.8.1.19 1
abc-b20 Pentium II 333 256 100 RH6.2 172.8.1.20 1
abc-b21 Pentium II 400 256 100 RH6.2 W2k 172.8.0.21 1
abc-b22 Pentium III 933 256 100 RH6.2 W2k 172.8.0.22 1
abc-b23 Pentium III 933 256 100 RH6.2 172.8.0.23 1
abc-b24 Pentium III 933 256 100 RH6.2 172.8.0.24 1
abc-b25 Pentium III 933 256 100 RH6.2 172.8.0.25 1
abc-b26 Pentium III 1000GHZ 256 100 RH6.1 172.8.0.26 1
abc-b27 Pentium III 1000GHZ 256 100 RH6.1 172.8.0.27 1

abc-b28
dual Pentium III

xeon 550 512 100 RH6.1 172.8.0.28 2

Total 30

Table 5: AFIT's Pile of PCs
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B Evolutionary Algorithms

A general framework for evolutionary algorithms was developed by Thomas B�ack [2]. This

framework is based on several aspects of evolutionary algorithms. The �rst is that evolutionary

algorithms utilize a population of individuals. Children are created from these individuals by a

randomization process intended to model genetic mutation and/or recombination. From generation

to generation these individuals are evaluated based on some quality or �tness funtion that can be

applied to each one of them.

As a general framework for these basic instances, B�ack de�nes I to denote an arbitrary space

of individuals � 2 I , and F : I ! < to denote a real-valued �tness function of individuals. Using

� and � to denote parent and children population sizes, P (t) = (�1(t); :::; ��t) 2 I� characterizes

a population at generation t. Selection, mutation, and recombination are operators that transform

complete populations. B�ack describes these operators from a high-level perspective of the overall

population but they can be used at the lower level of operating on the individual members of the

population. B�ack reduces his representation to a simple recombination-mutation-selection loop as

shown in �gure 20.

Input: �; �;��;�r;�m;�s

Output: a�, the best individual found during
the run or P �, the best population
found during the run.

1 t 0;
2 P (t) initialize(�);
3 F (t) evaluate(P (t); �);
4 while(�(P (t);��) 6= true)do
5 P 0(t) recombine(P (t);�r);
6 P 00(t) mutate(P 0(t);�m);
7 F (t) evaluate(P 00(t); �);
8 P (t+ 1) select(P 00(t); F (t); �;�s);
9 t t+ 1;
10 od

Figure 20: B�ack's Basic Evolutionary Algorithm

The initial population is instantiated by some chosen means which may be deterministic or

stochastic. The initial population is then evaluated based on a chosen �tness or quality measure.
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Once this is done, the while loop is entered. The methods of recombination, mutation, evaluation,

and selection are the distinguishing characteristics between the major categories of evolutionary

algorithms and are discussed in the next sections.

The while loop is repeated until the termination condition is met. The termination condition

varies from implementation to implementation and some possibilities are a certain number of gen-

erations, a certain quality of the overall population, or the population has converged.

B.1 Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms �rst proposed and analyzed by John

Holland[2]. There are three features which distinguish GAs as �rst proposed by Holland from other

evolutionary algorithms:

1. The representation used, which is a bit string,

2. the method of selection, which is proportional selection, and

3. the primary method of producing variations, which is crossover.

Of these three features, however, it is the emphasis placed on crossover which makes GAs distinctive.

Since it's original proposal, other alternative methods of representations and methods of selection

have been used.

Although many methods of crossover have been proposed, in almost every case these variants

are made in the spirit of Holland's original GA behavior in the processing of schemata into building

blocks. Individual structures are referred to as chromosomes. They are the genotypes that are

manipulated by the genetic algorithms. Evaluation routine decodes these structures and assigns a

�tness value. Typically,but not necessarily, the chromosomes are bit strings. The value at each locus

is commonly referred to as an allele. Sometimes the individual loci are called genes. At other times

the genes are combinations of alleles that have some phenotypical meaning.

Based on B�ack's general evolutionary algorithm outline the �rst thing is to create an initial

population. This initial creation can be random or deterministic. Once they are created an initial
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�tness evaluation is made and then the main loop begins to iterate until some termination criteria

is met.

There are several methods for selecting which members of the population are used to generate the

children in the next generation. In the original GA that Holland proposed, individuals are chosen for

mating probabilistically. This biases the reproduction in favor of individuals with a better �tness.

This is similar to nature's survival of the �ttest. The original GA had only one pair selected for

each mating cycle. Once the individuals that are chosen for mating of have been selected the genetic

operators are then applied. These operators are mutation and crossover and can be applied at

application speci�c rates.

In addition to selecting which members are the parents, a determination has to be made as

to how many children will get created from that mating. Some GAs produce one child per set of

parents while others can produce many children from one parent. The algorithm is considered to

be a steady state GA when only a few children are generated and the majority of the population

remains constant or stays the same.

Once the children have been generated, the selection operator is used to produce the next gen-

eration. One should take care in how the selection is biased. Incorrect biasing may lead to precon-

vergence of the search and entrapment in a local minimum or maximum.

B.2 Representations

For every problem there has to be some way to represent the problem domain in a way that can be

understood by a computer. This representation [2] is very important regarding how the algorithm

is constructed and how it performs. As the structure of this representation varies from problem to

problem so may the actual representation very in a number of ways. The choice of representation

depends not only on the problem being represented but also on how that representation is processed.

For instance, the particular search algorithm used may be more eÆcient on a particular data structure

such as parse trees vs. real-valued vectors. Several representations used in evolutionary computing

are discussed in the following sections.
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Binary Strings

The representation used in Goldberg's original GA is a binary string [2]. These binary strings are

typically of �xed length. The mutation operator typically inverts individual bits within the string.

The crossover operator has many variations but generally involves swapping matching bit sections

between two individuals. Binary strings may use standard binary decoding or may use a Gray code

interpretation of the string. Binary strings may also be mapped into some schema used to develop

or preserve good building blocks within the strings.

Real-valued Vectors

If the problem domain is based on real-valued functions then a representation that uses real numbers

instead of bits is more appropriate. Evolution strategies and evolutionary programming typically

use real-valued vectors [2]. When using real values the concept of building blocks is not used, instead

the individual is viewed in its entirety. The typical mutation operator on real-valued individual is to

add a multivariate zero-mean Gaussian random variable to it to produce a new child. Real valued

vectors can be easily expanded to include some of the evolutionary computation parameters to allow

a means of self-adaptation.

Parse Trees

Parse trees [2] are a good �t when the representation desired is for a program or a function. This is a

representation that helps to ensure that only syntactically correct programs are created. This greatly

reduces the overall size of the search space vs. an unconstrained representation. One advantage of

parse trees is its natural recursive de�nition, which allows the structure to be dynamically changed.

One drawback to parse trees, however, is their inability to represent iterative loops.

Other Representations

Other representations[2] include the following:

1. Mixed-Integer Representation,
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2. Introns, and

3. Diploid Representation.

A mixed-integer representation allows a combination of binary strings and real-valued vectors

within an individual member of the population. Introns use additional encoding within the genotyp-

ical representation based on the biological concept of introns and extrons in the chromosomes. This

results in sections of the representation that may or may not contribute to the resulting decoding

of the individual solution. Finally, the diploid representation allows multiple allele values for each

position in the genome. An additional mechanism is required to specify which one is dominant.

B.3 Selection Operators

Selection [2] is one of the main operators used in evolutionary computing and its primary function is

to evolve the population towards a better solution. There are two places in the general EC algorithm

where selection occurs. The �rst is the selection of which members get selected to produce children.

The second is which members in the resulting population get to survive in the next generation. The

following sections discuss some of the main selection schemes used.

Proportional Selection

A proportional selection [2], or roulette wheel selection, makes a selection based on a proportionally

assigned weight. The proportion for a poor individual is small and the proportion assigned to the

best individual is the largest. All other individuals have proportions in between. This selection

may be made stochastically or deterministically. For a stochastic selection a roulette wheel can

be used to probabilistically select an individual, with each place on the wheel having a probability

sized proportionally to the �tness of the individual. For a deterministic selection, each individual is

selected for reproduction a proportional number of times.
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Tournament Selection

A tournament [2] is used to select one out of a group of competing individuals. The size of the group

has to be greater than one for a competition to take place. The individuals selected for a tournament

may be chosen deterministically or stochastically. This is closer to a survival of the �ttest selection.

Rank-based Selection

The rank-based selection [2], also known as elitist selection, ranks the population by some criteria.

The criteria is commonly the individuals �tness value. This selection starts with the best individual

and moves down the list until the desired number is chosen. The actual ranking may be a linear

ranking in which the rank of an individual is directly related to its �tness. The ranking might also

be a non-linear ranking in which better individuals get a higher weight. A third ranking might have

a threshold value in which only individuals with a �tness greater than a set value get selected. This

threshold value might be a set value or an adaptive one based on another population value such as

the mean population �tness.

B.4 Search Operators

Search operators [2] make changes to individuals in the population in a manner that moves the

population members around within the search space. These operators have to be aware of the

representation used within the individual members in order to maintain the functionality of the

representation. Regardless of whether mutation or some form of recombination is used, the resulting

individual still has to be interpreted within the space being searched and as it relates to the problem

domain. Mutation leans more to the exploration side of evolutionary computation and recombination

leans more to the exploitation side of evolutionary computation.

Mutation

Mutation [30] can be thought of as nature's way of trying something new. Point mutations and

regulatory mutations are two types of mutation that occur in nature. A point mutation occurs when
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a base gets added into a DNA strand which results in possible changes in the codon sequences.

Regulatory mutations result in changes as to whether or not a particular gene sequence is active.

Sometimes the new mutation survives, sometimes it gets repaired, and sometimes it just dies out.

Generally, for every representation used in evolutionary computations there is a mutation oper-

ator [2] that has been designed to operate on it. For instance, with binary strings a mutation would

result in a bit ip at some location in the bit string. For a real-valued vector, a mutation might

be the addition or subtraction of a normally distributed random variable within some bound. For

a permutation representation a mutation operator, such as the 2-opt, might pick two points in the

sequence and reverse all the points in between.

A possibly new mutation operator is essentially a lower level simulation of what happens in

nature when a point mutation occurs. As described previously, an additional base is inserted into

the existing DNA strand. This results in a shifting of the codons used in generating the proteins

from the messenger RNA. This can be simulated by applying a random mutation to a string. If the

mutation occurs then a random bit gets inserted at that point and the rest of the bits in the string

get shifted. To keep the size of the binary strings constant, the �nal bit gets thrown away.

Recombination

Recombination [2] can be thought of as mixing the genetic pot by swapping alleles between two

chromosomes. Two (or more) individuals are combined in some manner as to create new children

with only the parts that existed in the parents. The number of parents used and the number of

children created varies depending upon the designers choice.

Like mutation, just about every representation has some form of recombination operator designed

for it. A binary string crossover can number from one to many crossover points. Instead of having

predetermined crossover points the crossover points can be determined dynamically. A uniform

crossover gives every bit location in the string an equal weight and then iteratively determines

whether each bit location gets to be a crossover point. The other representations have similar

operations tailored to their underlying representation.
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C GProf Flat Pro�le of GRaCCE FS

The following is the at pro�le output from the GNU pro�ler gprof for a single run of GRaCCE.

The feature selection option was chosen and executed on the Iris data set. Lines with a total ms/call

greater than four seconds are used in determining the most signi�cant functions. However, particular

attention should be paid to the high percentage of time the program executes within the Template

Numerical Toolkit's Matrix initialization, copy, and destroy functions.

% the percentage of the total running time of the

time program used by this function.

cumulative a running sum of the number of seconds accounted

seconds for by this function and those listed above it.

self the number of seconds accounted for by this

seconds function alone. This is the major sort for this

listing.

calls the number of times this function was invoked, if

this function is profiled, else blank.

self the average number of milliseconds spent in this

ms/call function per call, if this function is profiled,

else blank.

total the average number of milliseconds spent in this

ms/call function and its descendents per call, if this

function is profiled, else blank.

name the name of the function. This is the minor sort

for this listing. The index shows the location of

the function in the gprof listing. If the index is

in parenthesis it shows where it would appear in

the gprof listing if it were to be printed.

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

24.60 28.89 28.89 55449967 0.00 0.00 TNT::Matrix<double>::initialize(i...

11.24 42.09 13.20 46945595 0.00 0.00 TNT::Matrix<double>::copy(double ...

7.66 51.09 9.00 64030514 0.00 0.00 TNT::Matrix<double>::destroy(void...

4.33 56.17 5.08 4246500 0.00 0.00 TNT::Matrix<double> TNT::matmult<...

3.72 60.54 4.37 17131578 0.00 0.00 TNT::Matrix<double>::set(double c...

3.29 64.40 3.86 28500 0.14 4.10 sortbydist2(bool, double, TNT::Ma...

3.17 68.12 3.72 44119119 0.00 0.00 TNT::Matrix<double>::operator()(i...

3.04 71.69 3.57 4246500 0.00 0.00 TNT::Matrix<double> operator-<dou...

2.79 74.97 3.28 25567272 0.00 0.00 TNT::Matrix<double>::operator=(TN...

2.78 78.24 3.27 45496310 0.00 0.00 TNT::Matrix<double>::operator()(i...

2.71 81.42 3.18 4246521 0.00 0.00 TNT::Matrix<double> TNT::transpos...

2.21 84.02 2.60 47090598 0.00 0.00 TNT::Matrix<double>::~Matrix(void...

2.17 86.57 2.55 52919572 0.00 0.00 TNT::Index1D::lbound(void) const

1.78 88.66 2.09 4333608 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...
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1.75 90.71 2.05 8522216 0.00 0.00 TNT::const_Region2D<TNT::Matrix<d...

1.64 92.63 1.92 21378323 0.00 0.00 TNT::Matrix<double>::Matrix(TNT::...

1.59 94.50 1.87 35270610 0.00 0.00 TNT::Matrix<double>::operator[](i...

1.43 96.18 1.68 17131578 0.00 0.00 TNT::Matrix<double>::Matrix(int, ...

1.41 97.84 1.66 23698500 0.00 0.00 TNT::const_Region2D<TNT::Matrix<d...

1.41 99.49 1.65 4246500 0.00 0.00 TNT::Matrix<double> map_sqRoot<do...

1.21 100.91 1.42 28500 0.05 0.12 TNT::Matrix<double> sortNSmallest...

1.18 102.29 1.38 17133090 0.00 0.00 TNT::Matrix<double>::num_rows(voi...

1.06 103.53 1.24 16994215 0.00 0.00 TNT::Matrix<double>::operator()(i...

0.96 104.66 1.13 26459826 0.00 0.00 TNT::Index1D::ubound(void) const

0.96 105.79 1.13 16020167 0.00 0.00 TNT::Matrix<double>::operator[](i...

0.95 106.91 1.12 21378356 0.00 0.00 TNT::Matrix<double>::num_cols(voi...

0.95 108.02 1.11 13725860 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.90 109.08 1.06 4704976 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.89 110.12 1.04 13344733 0.00 0.00 TNT::Index1D::Index1D(int, int)

0.76 111.01 0.89 4247176 0.00 0.00 VecQueue<double>::dequeue(void)

0.75 111.89 0.88 28501 0.03 0.88 VecQueue<double>::buildByRows(void)

0.73 112.75 0.86 4247176 0.00 0.00 VecQueue<double>::enqueue(TNT::Ma...

0.44 113.27 0.52 8522216 0.00 0.00 TNT::Matrix<double>::operator()(T...

0.37 113.70 0.43 8580547 0.00 0.00 TNT::Matrix<double>::Matrix(void)

0.37 114.13 0.43 8522216 0.00 0.00 TNT::const_Region2D<TNT::Matrix<d...

0.35 114.54 0.41 8522216 0.00 0.00 TNT::const_Region2D<TNT::Matrix<d...

0.32 114.92 0.38 4247176 0.00 0.00 VecNode<double>::~VecNode(void)

0.31 115.28 0.36 4247176 0.00 0.00 VecNode<double>::VecNode(TNT::Mat...

0.26 115.58 0.30 4704976 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.26 115.88 0.30 4305073 0.00 0.00 TNT::Index1D::operator=(TNT::Inde...

0.24 116.16 0.28 13914909 0.00 0.00 TNT::Matrix<double>::lbound(void)

0.23 116.43 0.27 4246500 0.00 0.00 TNT::Matrix<double> TNT::operator...

0.16 116.62 0.19 4275867 0.00 0.00 VecQueue<double>::isEmpty(void) c...

0.14 116.78 0.16 4704976 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.13 116.93 0.15 4704976 0.00 0.00 TNT::Matrix<double>::operator()(T...

0.09 117.04 0.11 190 0.58 617.69 knn2(unsigned int, TNT::Matrix<un...

0.08 117.13 0.09 171000 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.05 117.19 0.06 29026 0.00 0.01 TNT::Matrix<double> mat<double>(T...

0.03 117.23 0.04 771710 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.03 117.27 0.04 29125 0.00 0.01 TNT::Matrix<double> mat<double>(T...

0.02 117.29 0.02 28960 0.00 0.00 TNT::Matrix<int>::set(int const &)

0.02 117.31 0.02 28691 0.00 0.00 VecQueue<double>::~VecQueue(void)

0.02 117.33 0.02 28691 0.00 0.00 VecQueue<double>::VecQueue(void)

0.02 117.35 0.02 28500 0.00 0.00 int maxPos<int>(TNT::Matrix<int> ...

0.01 117.36 0.01 265047 0.00 0.00 TNT::Matrix<int>::operator()(int)

0.01 117.37 0.01 171159 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...

0.01 117.38 0.01 28837 0.00 0.00 TNT::Matrix<double>::size(void) c...

0.01 117.39 0.01 12852 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.01 117.40 0.01 3533 0.00 0.00 TNT::Matrix<unsigned int>::initia...

0.01 117.41 0.01 620 0.02 0.02 TNT::Matrix<int>::initialize(int,...

0.01 117.42 0.01 580 0.02 0.02 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 107093 0.00 0.00 TNT::Matrix<int>::operator()(int)...

0.00 117.42 0.00 28691 0.00 0.00 VecQueue<double>::queueSize(void)...

0.00 117.42 0.00 28691 0.00 0.00 VecQueue<double>::vecSize(void) c...

0.00 117.42 0.00 28520 0.00 0.00 TNT::Matrix<int>::size(void) const

0.00 117.42 0.00 28500 0.00 0.00 TNT::Matrix<int>::operator=(int c...

0.00 117.42 0.00 11528 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 8960 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 5520 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 4902 0.00 0.00 TNT::Matrix<unsigned int>::lbound...

0.00 117.42 0.00 4480 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 4120 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 3740 0.00 0.00 TNT::Matrix<unsigned int>::destro...
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0.00 117.42 0.00 3680 0.00 0.00 TNT::const_Region2D<TNT::Matrix<u...

0.00 117.42 0.00 3576 0.00 0.00 TNT::Matrix<unsigned int>::~Matri...

0.00 117.42 0.00 2343 0.00 0.00 TNT::Matrix<unsigned int>::num_ro...

0.00 117.42 0.00 2323 0.00 0.00 TNT::Matrix<unsigned int>::num_co...

0.00 117.42 0.00 1987 0.00 0.00 TNT::Matrix<unsigned int>::copy(u...

0.00 117.42 0.00 1786 0.00 0.00 TNT::Matrix<unsigned int>::set(un...

0.00 117.42 0.00 1785 0.00 0.00 TNT::Matrix<unsigned int>::Matrix...

0.00 117.42 0.00 1761 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 1761 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 1761 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 1761 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 1584 0.00 0.00 TNT::Matrix<unsigned int>::Matrix...

0.00 117.42 0.00 1524 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 1100 0.00 0.00 TNT::Matrix<double>::operator()(i...

0.00 117.42 0.00 920 0.00 0.00 TNT::const_Region2D<TNT::Matrix<u...

0.00 117.42 0.00 920 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 920 0.00 0.00 TNT::const_Region2D<TNT::Matrix<u...

0.00 117.42 0.00 920 0.00 0.00 TNT::const_Region2D<TNT::Matrix<u...

0.00 117.42 0.00 860 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 760 0.00 0.00 TNT::Matrix<int>::destroy(void)

0.00 117.42 0.00 670 0.00 0.00 TNT::Matrix<unsigned int>::size(v...

0.00 117.42 0.00 640 0.00 0.00 TNT::Matrix<int>::~Matrix(void)

0.00 117.42 0.00 590 0.00 0.00 TNT::Matrix<double> operator/<dou...

0.00 117.42 0.00 540 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 540 0.00 0.00 TNT::const_Region2D<TNT::Matrix<u...

0.00 117.42 0.00 460 0.00 0.02 TNT::Matrix<int>::Matrix(int, int...

0.00 117.42 0.00 423 0.00 0.00 TNT::Matrix<unsigned int>::operat...

0.00 117.42 0.00 380 0.00 0.01 TNT::Matrix<unsigned int> mat<uns...

0.00 117.42 0.00 380 0.00 0.00 unsigned int sum<unsigned int>(TN...

0.00 117.42 0.00 360 0.00 0.01 TNT::Matrix<unsigned int> TNT::mu...

0.00 117.42 0.00 260 0.00 0.01 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 260 0.00 0.00 TNT::Region2D<TNT::Matrix<unsigne...

0.00 117.42 0.00 220 0.00 0.01 TNT::Matrix<unsigned int> TNT::op...

0.00 117.42 0.00 207 0.00 0.00 TNT::Matrix<unsigned int>::Matrix...

0.00 117.42 0.00 191 0.00 0.01 TNT::Matrix<double> appendCols<do...

0.00 117.42 0.00 190 0.00 0.05 TNT::Region2D<TNT::Matrix<double>...

0.00 117.42 0.00 190 0.00 0.02 VecQueue<double>::buildByCols(void)

0.00 117.42 0.00 190 0.00 0.10 get_featsubset(int, TNT::Matrix<u...

0.00 117.42 0.00 190 0.00 0.00 TNT::const_Region2D<TNT::Matrix<d...

0.00 117.42 0.00 151 0.00 0.00 num_items(char *)

0.00 117.42 0.00 150 0.00 0.00 TNT::Matrix<double>::Matrix(int, ...

0.00 117.42 0.00 140 0.00 0.00 TNT::Matrix<int>::Matrix(void)

0.00 117.42 0.00 121 0.00 0.01 TNT::Matrix<unsigned int> mat<uns...

0.00 117.42 0.00 121 0.00 0.00 randMatrix(int, int)

0.00 117.42 0.00 120 0.00 0.01 TNT::Matrix<int>::operator=(TNT::...

0.00 117.42 0.00 101 0.00 0.00 TNT::Matrix<double> operator*<dou...

0.00 117.42 0.00 100 0.00 0.00 TNT::Matrix<int>::copy(int const *)

0.00 117.42 0.00 80 0.00 0.00 TNT::operator+(TNT::Index1D const...

0.00 117.42 0.00 80 0.00 0.01 TNT::Matrix<unsigned int> map_com...

0.00 117.42 0.00 80 0.00 0.01 TNT::Matrix<unsigned int> partial...

0.00 117.42 0.00 61 0.00 0.02 TNT::Matrix<unsigned int> cast<do...

0.00 117.42 0.00 61 0.00 0.00 TNT::Matrix<double> map<double, d...

0.00 117.42 0.00 60 0.00 0.01 TNT::Matrix<unsigned int> TNT::op...

0.00 117.42 0.00 60 0.00 0.00 TNT::Matrix<double> cast<unsigned...

0.00 117.42 0.00 60 0.00 0.00 TNT::Matrix<double> TNT::mult_ele...

0.00 117.42 0.00 60 0.00 0.02 TNT::Matrix<int>::newsize(int, int)

0.00 117.42 0.00 60 0.00 0.00 TNT::Matrix<int>::num_rows(void) ...

0.00 117.42 0.00 60 0.00 0.03 void sort<double>(TNT::Matrix<dou...

0.00 117.42 0.00 53 0.00 0.00 TNT::Region2D<TNT::Matrix<double>...
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0.00 117.42 0.00 53 0.00 0.00 double sum<double>(TNT::Matrix<do ...

0.00 117.42 0.00 40 0.00 0.02 TNT::Matrix<int>::Matrix(TNT::Mat ...

0.00 117.42 0.00 40 0.00 0.02 TNT::Matrix<unsigned int> map_les ...

0.00 117.42 0.00 40 0.00 0.02 TNT::Matrix<unsigned int> map_les ...

0.00 117.42 0.00 40 0.00 0.02 TNT::Matrix<unsigned int> map_rem ...

0.00 117.42 0.00 40 0.00 0.00 TNT::Matrix<double> rangeVect<dou ...

0.00 117.42 0.00 23 0.00 0.00 TNT::Matrix<double>::newsize(int, ...

0.00 117.42 0.00 21 0.00 0.00 double minVal<double>(TNT::Matrix ...

0.00 117.42 0.00 21 0.00 5589.63 objfun2(unsigned int, TNT::Matrix ...

0.00 117.42 0.00 20 0.00 0.00 TNT::Matrix<double> TNT::operator ...

0.00 117.42 0.00 20 0.00 0.02 TNT::Matrix<unsigned int> map_isE ...

0.00 117.42 0.00 20 0.00 0.00 int maxVal<int>(TNT::Matrix<int> ...

0.00 117.42 0.00 20 0.00 0.30 mut(TNT::Matrix<unsigned int> con ...

0.00 117.42 0.00 20 0.00 0.00 TNT::Matrix<unsigned int>::newsiz ...

0.00 117.42 0.00 20 0.00 0.00 TNT::Matrix<double> partialSums<d ...

0.00 117.42 0.00 20 0.00 0.00 randScalar(void)

0.00 117.42 0.00 20 0.00 0.03 TNT::Matrix<int> rangeVect<int>(i ...

0.00 117.42 0.00 20 0.00 0.08 ranking(TNT::Matrix<double> const ...

0.00 117.42 0.00 20 0.00 1.08 recombin(RecombinFun, TNT::Matrix ...

0.00 117.42 0.00 20 0.00 0.12 reins(TNT::Matrix<unsigned int> c ...

0.00 117.42 0.00 20 0.00 0.18 select(ReprodSelFun, TNT::Matrix< ...

0.00 117.42 0.00 20 0.00 0.12 sus(TNT::Matrix<double> const &, ...

0.00 117.42 0.00 20 0.00 1.08 xovdp(TNT::Matrix<unsigned int> c ...

0.00 117.42 0.00 20 0.00 1.08 xovmp(TNT::Matrix<unsigned int> c ...

0.00 117.42 0.00 2 0.00 0.00 __static_initialization_and_destr ...

0.00 117.42 0.00 1 0.00 0.00 TNT::Matrix<unsigned int>::operat ...

0.00 117.42 0.00 1 0.00 0.01 TNT::Matrix<unsigned int> operato ...

0.00 117.42 0.00 1 0.00 1.15 istream & TNT::operator>><double> ...

0.00 117.42 0.00 1 0.00 0.00 changeFileExtension(char const *, ...

0.00 117.42 0.00 1 0.00 0.03 crtbp(unsigned int, unsigned int, ...

0.00 117.42 0.00 1 0.00 117417.65 ga_fs01(unsigned int, TNT::Matri ...

0.00 117.42 0.00 1 0.00 1.15 getInputs(void)

0.00 117.42 0.00 1 0.00 0.03 get_classcnt(TNT::Matrix<double> ...

0.00 117.42 0.00 1 0.00 117417.65 gracce_exop(void)

0.00 117.42 0.00 1 0.00 117417.65 gracce_fsel(void)

0.00 117.42 0.00 1 0.00 1.19 gracce_load(void)

0.00 117.42 0.00 1 0.00 1.19 load_ds(void)

0.00 117.42 0.00 1 0.00 0.00 double maxVal<double>(TNT::Matrix ...

0.00 117.42 0.00 1 0.00 0.00 int minPos<double>(TNT::Matrix<do ...

0.00 117.42 0.00 1 0.00 0.00 void printOnlyArray<unsigned int> ...
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D GProf Call Graph of GRaCCE FS

The following is the call graph output from the GNU pro�ler gprof for a single run of GRaCCE.

The feature selection option was chosen and executed on the Iris data set. Lines in the output,

shortened to prevent wrapping of the text, contain an ellipses marking the removed text.

This table describes the call tree of the program, and was sorted by

the total amount of time spent in each function and its children.

Each entry in this table consists of several lines. The line with the

index number at the left hand margin lists the current function.

The lines above it list the functions that called this function,

and the lines below it list the functions this one called.

This line lists:

index A unique number given to each element of the table.

Index numbers are sorted numerically.

The index number is printed next to every function name so

it is easier to look up where the function in the table.

% time This is the percentage of the `total' time that was spent

in this function and its children. Note that due to

different viewpoints, functions excluded by options, etc,

these numbers will NOT add up to 100%.

self This is the total amount of time spent in this function.

children This is the total amount of time propagated into this

function by its children.

called This is the number of times the function was called.

If the function called itself recursively, the number

only includes non-recursive calls, and is followed by

a `+' and the number of recursive calls.

name The name of the current function. The index number is

printed after it. If the function is a member of a

cycle, the cycle number is printed between the

function's name and the index number.

For the function's parents, the fields have the following meanings:

self This is the amount of time that was propagated directly

from the function into this parent.

children This is the amount of time that was propagated from

the function's children into this parent.

called This is the number of times this parent called the

function `/' the total number of times the function

was called. Recursive calls to the function are not

included in the number after the `/'.

name This is the name of the parent. The parent's index

number is printed after it. If the parent is a
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member of a cycle, the cycle number is printed between

the name and the index number.

If the parents of the function cannot be determined, the word

`<spontaneous>' is printed in the `name' field, and all the other

fields are blank.

For the function's children, the fields have the following meanings:

self This is the amount of time that was propagated directly

from the child into the function.

children This is the amount of time that was propagated from the

child's children to the function.

called This is the number of times the function called

this child `/' the total number of times the child

was called. Recursive calls by the child are not

listed in the number after the `/'.

name This is the name of the child. The child's index

number is printed after it. If the child is a

member of a cycle, the cycle number is printed

between the name and the index number.

If there are any cycles (circles) in the call graph, there is an

entry for the cycle-as-a-whole. This entry shows who called the

cycle (as parents) and the members of the cycle (as children.)

The `+' recursive calls entry shows the number of function calls that

were internal to the cycle, and the calls entry for each member shows,

for that member, how many times it was called from other members of

the cycle.

granularity: each sample hit covers 4 byte(s) for 0.01% of 117.42 seconds

index % time self children called name

<spontaneous>

[1] 100.0 0.00 117.42 main [1]

0.00 117.42 1/1 gracce_exop(void) [2]

0.00 0.00 1/1 gracce_load(void) [93]

0.00 0.00 1/1 getInputs(void) [96]

-----------------------------------------------

0.00 117.42 1/1 main [1]

[2] 100.0 0.00 117.42 1 gracce_exop(void) [2]

0.00 117.42 1/1 gracce_fsel(void) [3]

-----------------------------------------------

0.00 117.42 1/1 gracce_exop(void) [2]

[3] 100.0 0.00 117.42 1 gracce_fsel(void) [3]

0.00 117.42 1/1 ga_fs01(unsigned int, TNT::Matrix<u...

0.00 0.00 1/47090598 TNT::Matrix<double>::~Matrix(void) [20]

0.00 0.00 1/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 1/207 TNT::Matrix<unsigned int>::Matrix(...[400]

0.00 0.00 1/1 changeFileExtension(char const *, ...[161]

0.00 0.00 1/1 void printOnlyArray<unsigned int>(...[162]

0.00 0.00 1/3576 TNT::Matrix<unsigned int>::~Matrix...[396]

-----------------------------------------------

0.00 117.42 1/1 gracce_fsel(void) [3]

[4] 100.0 0.00 117.42 1 ga_fs01(unsigned int, TNT::Matrix<unsign...[4]

0.00 117.38 21/21 objfun2(unsigned int, TNT::Matrix<u...
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0.00 0.02 20/20 recombin(RecombinFun, TNT::Matrix<u...[56]

0.00 0.01 20/20 mut(TNT::Matrix<unsigned int> const...[75]

0.00 0.00 20/20 select(ReprodSelFun, TNT::Matrix<un...[79]

0.00 0.00 20/20 reins(TNT::Matrix<unsigned int> cons...

0.00 0.00 20/20 ranking(TNT::Matrix<double> const &) [88]

0.00 0.00 63/423 TNT::Matrix<unsigned int>::operato...[110]

0.00 0.00 1/1 crtbp(unsigned int, unsigned int, ...[126]

0.00 0.00 1/1 get_classcnt(TNT::Matrix<double> c...[127]

0.00 0.00 20/25567272 TNT::Matrix<double>::operator=(TNT...[10]

0.00 0.00 1/121 TNT::Matrix<unsigned int> mat<unsig...[90]

0.00 0.00 1/1 TNT::Matrix<unsigned int> operator...[131]

0.00 0.00 20/21 double minVal<double>(TNT::Matrix<...[132]

0.00 0.00 1/191 TNT::Matrix<double> appendCols<doub...[92]

0.00 0.00 25/47090598 TNT::Matrix<double>::~Matrix(void) [20]

0.00 0.00 40/44119119 TNT::Matrix<double>::operator()(in...[28]

0.00 0.00 1/1785 TNT::Matrix<unsigned int>::Matrix(i...[76]

0.00 0.00 1/17131578 TNT::Matrix<double>::Matrix(int, i...[15]

0.00 0.00 1/23 TNT::Matrix<double>::newsize(int, ...[129]

0.00 0.00 1/1 int minPos<double>(TNT::Matrix<dou...[138]

0.00 0.00 1/1761 TNT::Matrix<unsigned int>::operato...[108]

0.00 0.00 2/13344733 TNT::Index1D::Index1D(int, int) [43]

0.00 0.00 3/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 1/17133090 TNT::Matrix<double>::num_rows(void...[37]

0.00 0.00 1/21378356 TNT::Matrix<double>::num_cols(void...[42]

0.00 0.00 68/3576 TNT::Matrix<unsigned int>::~Matrix...[396]

0.00 0.00 3/207 TNT::Matrix<unsigned int>::Matrix(...[400]

-----------------------------------------------

0.00 117.38 21/21 ga_fs01(unsigned int, TNT::Matrix<un...[4]

[5] 100.0 0.00 117.38 21 objfun2(unsigned int, TNT::Matrix<unsig...

0.11 117.25 190/190 knn2(unsigned int, TNT::Matrix<unsi...

0.00 0.02 190/190 get_featsubset(int, TNT::Matrix<uns...[64]

0.00 0.00 380/380 TNT::Matrix<unsigned int> mat<unsig...[81]

0.00 0.00 211/25567272 TNT::Matrix<double>::operator=(TNT...[10]

0.00 0.00 380/920 TNT::Matrix<unsigned int>::operato...[118]

0.00 0.00 21/4246521 TNT::Matrix<double> TNT::transpose<...[16]

0.00 0.00 253/47090598 TNT::Matrix<double>::~Matrix(void) [20]

0.00 0.00 232/13344733 TNT::Index1D::Index1D(int, int) [43]

0.00 0.00 21/23 TNT::Matrix<double>::newsize(int, ...[129]

0.00 0.00 190/16994215 TNT::Matrix<double>::operator()(int) [38]

0.00 0.00 190/4305073 TNT::Index1D::operator=(TNT::Index1...[48]

0.00 0.00 42/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 380/3576 TNT::Matrix<unsigned int>::~Matrix...[396]

0.00 0.00 190/380 unsigned int sum<unsigned int>(TNT...[154]

0.00 0.00 21/2343 TNT::Matrix<unsigned int>::num_row...[143]

0.00 0.00 21/2323 TNT::Matrix<unsigned int>::num_col...[144]

-----------------------------------------------

0.11 117.25 190/190 objfun2(unsigned int, TNT::Matrix<unsi...

[6] 99.9 0.11 117.25 190 knn2(unsigned int, TNT::Matrix<unsigned in...

3.86 113.09 28500/28500 sortbydist2(bool, double, TNT::Matri...[7]

0.06 0.09 28500/29026 TNT::Matrix<double> mat<double>(TNT...[54]

0.00 0.02 28690/25567272 TNT::Matrix<double>::operator=(TNT...[10]

0.02 0.00 28500/28500 int maxPos<int>(TNT::Matrix<int> co...[60]

0.00 0.02 28500/28500 TNT::Matrix<int>::operator=(int con...[63]

0.02 0.00 228570/44119119 TNT::Matrix<double>::operator()(in...[28]

0.00 0.01 28500/8522216 TNT::Matrix<double>::operator()(TNT...[24]

0.00 0.01 58520/47090598 TNT::Matrix<double>::~Matrix(void) [20]

0.01 0.00 256500/265047 TNT::Matrix<int>::operator()(int) [68]

0.01 0.00 114000/45496310 TNT::Matrix<double>::operator()(in...[31]

0.00 0.01 380/460 TNT::Matrix<int>::Matrix(int, int, ...[74]
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0.00 0.00 570/29125 TNT::Matrix<double> mat<double>(TNT...[53]

0.00 0.00 29830/13344733 TNT::Index1D::Index1D(int, int) [43]

0.00 0.00 29070/4305073 TNT::Index1D::operator=(TNT::Index1...[48]

0.00 0.00 570/590 TNT::Matrix<double> operator/<doubl...[89]

0.00 0.00 570/4333608 TNT::Region2D<TNT::Matrix<double> >...[22]

0.00 0.00 1140/4704976 TNT::Matrix<double>::operator()(TNT...[32]

0.00 0.00 190/17131578 TNT::Matrix<double>::Matrix(int, i...[15]

0.00 0.00 190/17133090 TNT::Matrix<double>::num_rows(void...[37]

0.00 0.00 190/21378356 TNT::Matrix<double>::num_cols(void...[42]

0.00 0.00 190/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 1710/4120 TNT::Matrix<unsigned int>::operato...[394]

0.00 0.00 380/640 TNT::Matrix<int>::~Matrix(void) [399]

0.00 0.00 190/380 unsigned int sum<unsigned int>(TNT...[154]

-----------------------------------------------

3.86 113.09 28500/28500 knn2(unsigned int, TNT::Matrix<unsig...

[7] 99.6 3.86 113.09 28500 sortbydist2(bool, double, TNT::Matrix<do...[7]

0.88 24.32 28500/28501 VecQueue<double>::buildByRows(void) [9]

3.57 13.50 4246500/4246500 TNT::Matrix<double> operator-<doubl...

0.27 15.74 4246500/4246500 TNT::Matrix<double> TNT::operator*<...[13]

3.18 10.35 4246500/4246521 TNT::Matrix<double> TNT::transpose<...[16]

1.65 9.56 4246500/4246500 TNT::Matrix<double> map_sqRoot<doub...[18]

1.64 9.21 12796500/25567272 TNT::Matrix<double>::operator=(TN...[10]

0.86 4.36 4246500/4247176 VecQueue<double>::enqueue(TNT::Matr...[23]

0.52 4.41 8493000/8522216 TNT::Matrix<double>::operator()(TNT...[24]

1.42 2.02 28500/28500 TNT::Matrix<double> sortNSmallestRo...[29]

0.95 2.41 17128500/47090598 TNT::Matrix<double>::~Matrix(void) [20]

1.24 0.00 16986000/16994215 TNT::Matrix<double>::operator()(int)[38]

0.34 0.00 4389000/13344733 TNT::Index1D::Index1D(int, int) [43]

0.31 0.00 4246500/45496310 TNT::Matrix<double>::operator()(in...[31]

0.30 0.00 4275000/4305073 TNT::Index1D::operator=(TNT::Index1...[48]

0.00 0.02 28500/21378323 TNT::Matrix<double>::Matrix(TNT::M...[11]

0.00 0.02 28500/17131578 TNT::Matrix<double>::Matrix(int, i...[15]

0.02 0.00 28500/28691 VecQueue<double>::VecQueue(void) [62]

0.02 0.00 28500/28691 VecQueue<double>::~VecQueue(void) [61]

0.00 0.00 57000/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 28500/17133090 TNT::Matrix<double>::num_rows(void...[37]

0.00 0.00 28500/21378356 TNT::Matrix<double>::num_cols(void...[42]

-----------------------------------------------

0.00 0.00 23/55449967 TNT::Matrix<double>::newsize(int,...[129]

0.00 0.00 150/55449967 TNT::Matrix<double>::Matrix(int, ...[121]

8.83 0.00 16939893/55449967 TNT::Matrix<double>::operator=(TN...[10]

8.93 0.00 17131578/55449967 TNT::Matrix<double>::Matrix(int, ...[15]

11.14 0.00 21378323/55449967 TNT::Matrix<double>::Matrix(TNT::...[11]

[8] 24.6 28.89 0.00 55449967 TNT::Matrix<double>::initialize(int, int) [8]

-----------------------------------------------

0.00 0.00 1/28501 load_ds(void) [94]

0.88 24.32 28500/28501 sortbydist2(bool, double, TNT::Matri...[7]

[9] 21.5 0.88 24.32 28501 VecQueue<double>::buildByRows(void) [9]

0.89 9.64 4246650/4247176 VecQueue<double>::dequeue(void) [19]

2.05 4.13 4246650/4333608 TNT::Region2D<TNT::Matrix<double> >...[22]

0.54 3.06 4246650/25567272 TNT::Matrix<double>::operator=(TNT...[10]

0.14 2.31 4246650/4704976 TNT::Matrix<double>::operator()(TNT...[32]

0.24 0.60 4303652/47090598 TNT::Matrix<double>::~Matrix(void) [20]

0.66 0.00 8493300/13344733 TNT::Index1D::Index1D(int, int) [43]

0.00 0.02 28501/21378323 TNT::Matrix<double>::Matrix(TNT::M...[11]

0.00 0.02 28501/17131578 TNT::Matrix<double>::Matrix(int, i...[15]

0.00 0.01 28501/28691 VecQueue<double>::vecSize(void) const [67]

0.00 0.00 28501/8580547 TNT::Matrix<double>::Matrix(void) [45]

0.00 0.00 28501/28691 VecQueue<double>::queueSize(void) ...[139]
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-----------------------------------------------

0.00 0.00 1/25567272 load_ds(void) [94]

0.00 0.00 2/25567272 crtbp(unsigned int, unsigned int,...[126]

0.00 0.00 20/25567272 ga_fs01(unsigned int, TNT::Matrix<u...[4]

0.00 0.00 40/25567272 ranking(TNT::Matrix<double> const &) [88]

0.00 0.00 60/25567272 sus(TNT::Matrix<double> const &, u...[83]

0.00 0.00 60/25567272 mut(TNT::Matrix<unsigned int> cons...[75]

0.00 0.00 60/25567272 void sort<double>(TNT::Matrix<doub...[84]

0.00 0.00 100/25567272 xovmp(TNT::Matrix<unsigned int> co...[58]

0.00 0.00 211/25567272 objfun2(unsigned int, TNT::Matrix<uns...

0.00 0.00 526/25567272 VecQueue<double>::buildByCols(void) [80]

0.00 0.02 28690/25567272 knn2(unsigned int, TNT::Matrix<unsign...

0.54 3.06 4246650/25567272 VecQueue<double>::buildByRows(void) [9]

0.54 3.06 4247176/25567272 VecNode<double>::VecNode(TNT::Matr...[27]

0.54 3.06 4247176/25567272 VecQueue<double>::dequeue(void) [19]

1.64 9.21 12796500/25567272 sortbydist2(bool, double, TNT::Mat...[7]

[10] 18.5 3.28 18.40 25567272 TNT::Matrix<double>::operator=(TNT::Ma...[10]

8.83 0.00 16939893/55449967 TNT::Matrix<double>::initialize(in...[8]

7.19 0.00 25567272/46945595 TNT::Matrix<double>::copy(double ...[17]

2.38 0.00 16939893/64030514 TNT::Matrix<double>::destroy(void) [21]

-----------------------------------------------

0.00 0.00 20/21378323 ranking(TNT::Matrix<double> const &) [88]

0.00 0.00 20/21378323 TNT::Matrix<double> partialSums<d...[122]

0.00 0.00 20/21378323 TNT::Matrix<double> TNT::operator...[123]

0.00 0.00 40/21378323 TNT::Matrix<double> rangeVect<dou...[120]

-----------------------------------------------
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E Main GRaCCE Module

/************************************************************************

/* File Name: gracce.cpp

/* Description: This file is the main driver for the various functions

/* in the GRaCCE algorithm.

/************************************************************************/

/* include files removed for brevity */

//using namespace std;

/************************************************************************

/*

/* MODULE NAME: gracce_exop

/* CALLED FROM: gracce_main (triggered by GUI event).

/* INPUT(S): None.

/* OUTPUT(S): None.

/* DESCRIPTION: This module initiates the operation selected by the

/* user.

/*

/************************************************************************/

void gracce_exop() {

switch (MainMenu::phaseChoice) {

case (WINNOWING):

gracce_winnow();

break;

case (FEATURE_SELECTION):

gracce_fsel();

break;

case (RULE_INDUCTION):

gracce_exec();

break;

} //switch

}

void main(int argc, char **argv) {

MPI::Init(argc, argv); // DMS

int comm_size = MPI::COMM_WORLD.Get_size(); // DMS

int my_rank = MPI::COMM_WORLD.Get_rank(); // DMS

char iLine[101];

int bogomips = 0;

ifstream inStream;

int i;

bool found;

// open the cpu info file

inStream.open("/proc/cpuinfo", ios::in);

if (!inStream) {
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cerr << "Could not open /proc/cpuinfo" << endl;

exit(0);

}

found = false;

while (!inStream.eof() & !found) {

inStream.getline(iLine, 100);

if ((iLine[0] == 'b') && (iLine[1] == 'o') && (iLine[2] == 'g')) {

i = 10;

while ((iLine[i] == ' ') || (iLine[i] == ':')) {

i++;

}

// convert number into real

while (iLine[i] != '.') {

bogomips = bogomips * 10 + (int(iLine[i]) - 48);

i++;

}

found = true;

}

}

inStream.close();

MPI::COMM_WORLD.Gather(&bogomips, 1, MPI_INT, Shared::bogovec,

1, MPI_INT, 0);

if (my_rank == 0) {

char dummyString[40];

int choiceInt;

ifstream inStream;

do {

cerr << "1) Winnowing Phase" << endl;

cerr << "2) Feature Selection" << endl;

cerr << "3) Rule Induction Phase" << endl;

cerr << "4) Exit" << endl << endl;

cerr << "Enter the number corresponding to your choice: ";

cin >> choiceInt;

MainMenu::phaseChoice = static_cast<Phase>(choiceInt-1);

cerr << endl;

switch (MainMenu::phaseChoice) {

case WINNOWING:

case FEATURE_SELECTION:

getInputs();

cerr << "Enter the file name (with extension) of the ";

cerr << "initial data set: ";

ws(cin);

cin.getline(MainMenu::FileName,50);

cerr << endl << endl;

57



cout << endl << "File Tested: " << MainMenu::FileName

<< endl << endl;

gracce_load();

if (MainMenu::phaseChoice == WINNOWING) {

cerr << "Press enter to begin Winnowing";

}

else {

cerr << "Press enter to begin Feature Selection";

}

cin.getline(dummyString,40);

break;

case RULE_INDUCTION:

getInputs();

cerr << "Enter the file name (with extension) of the ";

cerr << "winnowed data set: ";

ws(cin);

cin.getline(MainMenu::FileName,50);

cerr << endl << endl;

cout << endl << "File Tested: " << MainMenu::FileName

<< endl << endl;

gracce_load();

cerr << "Press enter to begin Rule Induction";

cin.getline(dummyString,40);

break;

case EXIT:

break;

default:

cerr << "Invalid selection" << endl;

break;

}

cerr << endl << endl;

gracce_exop();

cerr << endl << endl;

cout << endl << endl;

} while (MainMenu::phaseChoice != EXIT);

MPI::COMM_WORLD.Barrier();

} // end if my_rank == 0

else {

int buff_size = 64000;

real buffer[buff_size];

unsigned ubuffer[buff_size];

Subscript rt, rp;

Subscript ct, cp;

Matrix<real> wds; // winnowed data set after removing a feature

Matrix<real> cmx; // confusion matrix

real currMscr; // misclassification rate of current pop item

// Index1D rowI(1,1), allCols(1,cp);

Index1D rowI(1,1);

int i, j;

// ****** Get DataSets::AllData needed by knn ********

MPI::COMM_WORLD.Barrier(); // Barrier 1
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MPI::COMM_WORLD.Bcast(&rt, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&ct, 1, MPI::UNSIGNED, 0);

for (i = 0; i < (rt * ct); i = i + buff_size) {

if ((i+buff_size) < (rt * ct))

MPI::COMM_WORLD.Bcast(&buffer[i], buff_size*2, MPI::REAL, 0);

else

MPI::COMM_WORLD.Bcast(&buffer[i], (rt*ct - i)*2, MPI::REAL, 0);

}

DataSets::AllData.newsize(rt,ct);

for (i = 1; i <= rt; i++) {

for (j = 1; j <= ct; j++) {

DataSets::AllData(i,j) = buffer[(j-1) + (i-1) * (int)ct];

}

}

MPI::COMM_WORLD.Barrier(); // Barrier 2

// ***** get two variables required by knn2 function *****

unsigned sv[2];

MPI::COMM_WORLD.Bcast(sv, 2, MPI::UNSIGNED, 0);

Shared::ClassMax = sv[0];

Shared::ClassMin = sv[1];

unsigned finished = 0; // Flag used to signal root has finished

// ***** objfun2 receives the following five items *****

unsigned vok;

Matrix<unsigned> tcc;

Matrix<unsigned> pop;

real mscr;

Matrix<real> score;

int rp_start, rp_end; // boundaries for modified for loop

unsigned Assignments[1024]; // holds assignments for 1024 / 4 nodes

while (finished == 0) { // loop until root sends a finished Bcast

MPI::COMM_WORLD.Bcast(&finished, 1, MPI::UNSIGNED, 0);

if (finished == 0) {

// ***** get vok *****

MPI::COMM_WORLD.Bcast(&vok, 1, MPI::UNSIGNED, 0);

// ***** get tcc *****

MPI::COMM_WORLD.Bcast(&rt, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&ct, 1, MPI::UNSIGNED, 0);

tcc.newsize(rt,ct);

for (i = 0; i < (rt * ct); i = i + buff_size) {

if ((i+buff_size) < (rt * ct))

MPI::COMM_WORLD.Bcast(&ubuffer[i], buff_size, MPI::UNSIGNED, 0);

else

59



MPI::COMM_WORLD.Bcast(&ubuffer[i], (rt*ct - i), MPI::UNSIGNED, 0);

}

for (i = 1; i <= rt; i++) {

for (j = 1; j <= ct; j++) {

tcc(i,j) = ubuffer[(j-1) + (i-1) * (int)ct];

}

}

// ***** get pop *****

MPI::COMM_WORLD.Bcast(&rp, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&cp, 1, MPI::UNSIGNED, 0);

pop.newsize(rp,cp);

for (i = 0; i < (rp * cp); i = i + buff_size) {

if ((i+buff_size) < (rp * cp))

MPI::COMM_WORLD.Bcast(&ubuffer[i], buff_size, MPI::UNSIGNED, 0);

else

MPI::COMM_WORLD.Bcast(&ubuffer[i], (rp*cp - i), MPI::UNSIGNED, 0);

}

for (i = 1; i <= rp; i++) {

for (j = 1; j <= cp; j++) {

pop(i,j) = ubuffer[(j-1) + (i-1) * (int)cp];

}

}

Index1D allCols(1,cp); // create index based on population size

score.newsize(1,rp);

mscr = Constants::INFINITY;

currMscr = mscr;

rp_start = 0;

rp_end = 0;

// For each individual, reconstruct and evaluate a subset of

// TrainData using the chosen features.

int buflength = comm_size * 4;

MPI::COMM_WORLD.Barrier();

MPI::COMM_WORLD.Bcast(Assignments, buflength, MPI_INT, 0);

for (int j = 0; j < comm_size; j++) {

if (Assignments[j*4] == my_rank) {

rp_start = Assignments[(j*4)+1];

rp_end = rp_start + Assignments[(j*4)+2] - 1;

}

}

MPI::COMM_WORLD.Barrier();

for (i = rp_start; i<= rp_end; i++) {

rowI = Index1D(i,i);
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// Only test fmaps that include at least 1 feature

if (sum(mat(pop(rowI,allCols))) > 0) {

wds = get_featsubset(1,mat(pop(rowI,allCols)),

DataSets::AllData);

knn2(vok,tcc,wds,currMscr,cmx,score(i));

if (currMscr < mscr) {

mscr = currMscr;

}

}

else {

score(i) = 1.0;

} // else

} // for

// return lowest mscr to root node

MPI::COMM_WORLD.Reduce(&mscr, &currMscr, 1, MPI::REAL, MPI::MIN, 0);

// send parts of score back to root node

MPI::COMM_WORLD.Send(&rp_start, 1, MPI::INT, 0, 0);

MPI::COMM_WORLD.Send(&rp_end, 1, MPI::INT, 0, 0);

for (i = rp_start; i <= rp_end; i++)

buffer[i] = score(i);

if (rp_end >= rp_start)

MPI::COMM_WORLD.Send(&buffer[rp_start], (rp_end - rp_start + 1),

MPI::DOUBLE, 0, 0);

else

MPI::COMM_WORLD.Send(&dummy, 1, MPI::DOUBLE, 0, 0);

}

}

// wait for end of root node

MPI::COMM_WORLD.Barrier();

}

MPI::Finalize();

}
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F GRaCCE's Feature Selection Module

/************************************************************************

/* File Name: featSel.cpp

/* Description: This file contains functions used during the feature

/* selection phase of the GRaCCE algorithm.

/* Public Functions:

/* gracce_fsel

/* Private Functions:

/* knn2

/* objfun2

/* ga_fs01

/* ga_fs02

/************************************************************************/

/* Include files deleted for brevity */

#define HETERO

using namespace std;

/************************************************************************

/*

/* MODULE NAME: knn2

/* CALLED FROM: objfun2

/* INPUT(S):

/* K - Value of K (for the kNN procedure).

/* tcc - Per class tally (of instances).

/* ds - Data set to be processed.

/*

/* OUTPUT(S):

/* mscr - Overall misclassification rate.

/* cmx - Confusion matrix (based on the kNN results) for the

/* remaining data. Each (i,j) element is the percentage of the

/* data points in ds of class i that have K-closest neighbors of

/* class j.

/* score - Overall fitness (accounts for number of features used

/* in the data set.

/*

/* DESCRIPTION: This module uses K-Nearest Neighbor algorithm to classify

/* each data point (based on its K closest neighbors). The

/* results are computed and the score (using the input)

/* data set is returned. This is a no-frills kNN

/* implementation used in conjunction with the feature

/* selection function.

/*

/************************************************************************/

void knn2(unsigned K, const Matrix<unsigned> &tcc,

const Matrix<real> &ds,

real &mscr, Matrix<real> &cmx, real &score) {

unsigned nc = (Shared::ClassMax-Shared::ClassMin)+1; // num classes

int dc = 1-Shared::ClassMin; // class offset into arrays

62



Subscript rows = ds.num_rows();

Subscript cols = ds.num_cols();

Matrix<int> ccnt(nc,1); // count of instances of each class

Subscript indx; // position in ccnt with highest count

Matrix<real> nn_list; // Sorted list of points, where:

// nn_list(i,:) = [class distance index]

Matrix<Subscript> map(rows,1,0); // class mapping for each exemplar

Index1D rowJ(1,1), afterCol1(2,cols);

Subscript i,j,c;

for (j=1; j<=rows; j++) {

rowJ = Index1D(j,j);

nn_list = sortbydist2(false,ds(j,1),mat(ds(rowJ,afterCol1)),

j,ds,K);

// Determine the majority class and update the class mapping.

ccnt = 0; // init ALL elements in ccnt to 0

for (i=1; i<=K; i++)

ccnt((int)nn_list(i,1)+dc) = ccnt((int)nn_list(i,1)+dc) + 1;

indx = maxPos(ccnt);

map(j) = indx-dc;

} //for j

// Now compute the confusion matrix for the entire data set.

cmx = Matrix<real>(nc,nc,0.0);

for (c=1; c<=nc; c++) {

for (i=1; i<=rows; i++) {

if (static_cast<Subscript>(ds(i,1)) == (c-dc)) {

cmx(c,map(i)+dc) = cmx(c,map(i)+dc)+1.0;

} //if

} //for i

} //for c

Index1D rowC(1,1), allCols(1,nc);

real res; // percentage of pts of given class that are misclassified

// Convert confusion matrix to percentages and compute

// the average per class mis-classification rate.

mscr = 0.0;

for (c=1; c<=nc; c++) {

if (tcc(c) > 0) {

rowC = Index1D(c,c);

cmx(rowC,allCols) = mat(cmx(rowC,allCols))

/ static_cast<real>(tcc(c));
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res = 1.0 - cmx(c,c);

mscr += res * static_cast<real>(tcc(c));

} //if

} //for c

mscr = mscr/static_cast<real>(sum(tcc)); // Overall error rate.

score = mscr+(0.005*static_cast<real>((cols-1))); // Overal fitness.

}

/************************************************************************

/*

/* MODULE NAME: objfun2

/* CALLED FROM: ga_fs01,

/* ga_fs02

/* INPUT(S):

/* vok - Value of K (for kNN algorithm).

/* tcc - Tally of instances per target class.

/* pop - Population of solutions (to be evaluated).

/*

/* OUTPUT(S):

/* mscr - Best overall misclassification rate.

/* score - Array of fitness scores (for each individual).

/*

/* DESCRIPTION: This objective function evaluates the performance of

/* the selected feature set (for a given data set) on

/* the kNN algorithm.

/*

/************************************************************************/

void objfun2(unsigned vok, const Matrix<unsigned> &tcc,

const Matrix<unsigned> &pop,

real &mscr, Matrix<real> &score) {

Subscript rp = pop.num_rows();

Subscript cp = pop.num_cols();

int comm_size = MPI::COMM_WORLD.Get_size();

int my_rank = MPI::COMM_WORLD.Get_rank();

int buff_size = 64000;

unsigned ubuffer[buff_size];

real buffer[buff_size];

real dummy = -1.0;

int rp_start, rp_end;

unsigned Assignments[1024];

unsigned finished = 0;

MPI::COMM_WORLD.Bcast(&finished, 1, MPI::UNSIGNED, 0);

Matrix<real> wds; // winnowed data set after removing a feature

Matrix<real> cmx; // confusion matrix

real currMscr; // misclassification rate of current pop item
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Index1D rowI(1,1), allCols(1,cp);

Subscript i, j;

Subscript rt, ct;

score.newsize(1,rp);

mscr = Constants::INFINITY;

// ****** sending vok *******

MPI::COMM_WORLD.Bcast(&vok, 1, MPI::UNSIGNED, 0);

// ****** sending tcc *******

rt = tcc.num_rows();

ct = tcc.num_cols();

MPI::COMM_WORLD.Bcast(&rt, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&ct, 1, MPI::UNSIGNED, 0);

for (i = 1; i <= rt; i++) {

for (j = 1; j <= ct; j++) {

ubuffer[(j-1) + (i-1) * (int)ct] = tcc(i,j);

}

}

for (i = 0; i < (rt * ct); i = i + buff_size) {

if ((i+buff_size) < (rt * ct))

MPI::COMM_WORLD.Bcast(&ubuffer[i], buff_size, MPI::UNSIGNED, 0);

else

MPI::COMM_WORLD.Bcast(&ubuffer[i], (rt*ct - i), MPI::UNSIGNED, 0);

}

// ****** sending pop ********

MPI::COMM_WORLD.Bcast(&rp, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&cp, 1, MPI::UNSIGNED, 0);

for (i = 1; i <= rp; i++) {

for (j = 1; j <= cp; j++) {

ubuffer[(j-1) + (i-1) * (int)cp] = pop(i,j);

}

}

for (int i = 0; i < (rp * cp); i = i + buff_size) {

if ((i+buff_size) < (rp * cp))

MPI::COMM_WORLD.Bcast(&ubuffer[i], buff_size, MPI::UNSIGNED, 0);

else

MPI::COMM_WORLD.Bcast(&ubuffer[i], (rp*cp - i), MPI::UNSIGNED, 0);

}

// For each individual, reconstruct and evaluate a subset of

// TrainData using the chosen features.

// Initialize Assignments vector

for (int j = 0; j < comm_size; j++) {

Assignments[j*4] = j; // node number

Assignments[j*4 + 1] = 0; // population member to start on

Assignments[j*4 + 2] = 0; // number of members to process
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Assignments[j*4 + 3] = (unsigned)Shared::bogovec[j];

}

#ifdef HETERO // adds a simple bubble sort on Assignments vector

bool changed = true;

while (changed) {

changed = false;

for (int j = 0; j < comm_size - 1; j++)

if (Assignments[j*4 + 3] < Assignments[(j+1)*4 + 3]) {

Assignments[comm_size*4 + 0] = Assignments[j*4 + 0];

Assignments[comm_size*4 + 1] = Assignments[j*4 + 1];

Assignments[comm_size*4 + 2] = Assignments[j*4 + 2];

Assignments[comm_size*4 + 3] = Assignments[j*4 + 3];

Assignments[j*4 + 0] = Assignments[(j+1)*4 + 0];

Assignments[j*4 + 1] = Assignments[(j+1)*4 + 1];

Assignments[j*4 + 2] = Assignments[(j+1)*4 + 2];

Assignments[j*4 + 3] = Assignments[(j+1)*4 + 3];

Assignments[(j+1)*4 + 0] = Assignments[comm_size*4 + 0];

Assignments[(j+1)*4 + 1] = Assignments[comm_size*4 + 1];

Assignments[(j+1)*4 + 2] = Assignments[comm_size*4 + 2];

Assignments[(j+1)*4 + 3] = Assignments[comm_size*4 + 3];

changed = true;

}

}

#endif

int place = 0;

for (int j = 0; j < rp; j++) {

Assignments[(place*4)+2]++;

place++;

if (place == comm_size)

place = 0;

}

Assignments[1] = 1;

for (int j = 0; j < comm_size - 1; j++) {

Assignments[(j+1)*4 + 1] = Assignments[j*4 + 1] + Assignments[j*4 + 2];

}

int buflength = comm_size * 4;

MPI::COMM_WORLD.Barrier();

MPI::COMM_WORLD.Bcast(Assignments, buflength, MPI_INT, 0);

for (int j = 0; j < comm_size; j++) {

if (Assignments[j*4] == my_rank) {

rp_start = Assignments[(j*4)+1];

rp_end = rp_start + Assignments[(j*4)+2] - 1;

}

}

MPI::COMM_WORLD.Barrier();

for (i = rp_start; i <= rp_end; i++) {

rowI = Index1D(i,i);
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// Only test fmaps that include at least 1 feature

if (sum(mat(pop(rowI,allCols))) > 0) {

wds = get_featsubset(1,mat(pop(rowI,allCols)),

DataSets::AllData);

knn2(vok,tcc,wds,currMscr,cmx,score(i));

if (currMscr < mscr) {

mscr = currMscr;

}

}

else {

score(i) = 1.0;

} //if

buffer[i] = score(i);

} //i

MPI::COMM_WORLD.Barrier();

// return lowest mscr to root node

MPI::COMM_WORLD.Reduce(&mscr, &currMscr, 1, MPI::REAL, MPI::MIN, 0);

if (currMscr < mscr)

mscr = currMscr;

for (int j = 1; j < comm_size; j++) {

// send parts of score back to root node

MPI::COMM_WORLD.Recv(&rp_start, 1, MPI::INT, j, 0);

MPI::COMM_WORLD.Recv(&rp_end, 1, MPI::INT, j, 0);

if (rp_end >= rp_start)

MPI::COMM_WORLD.Recv(&buffer[rp_start], (rp_end - rp_start + 1),

MPI::DOUBLE, j, 0);

else

MPI::COMM_WORLD.Recv(&dummy, 1, MPI::DOUBLE, j, 0);

}

for (i = 1; i <= rp; i++)

score(i) = buffer[i];

// cout << "Score = " << score << endl;

score = transpose(score);

}

/************************************************************************

/*

/* MODULE NAME: ga_fs01

/* CALLED FROM: gracce_fsel

/* INPUT(S):

/* vok - Value of k for the kNN algorithm.

/*

/* OUTPUT(S):

/* fmap - List of enabled features in the best solution.

/* hist - (Best) Fitness history of the GA population, where for each

/* row, col 1 = generation number, col 2 = fitness value.

/*

/* DESCRIPTION: This module performs feature selection, using a GA-based
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/* search to find the best (most fit) feature set. Fitness

/* is based on the size of the feature set and its

/* classification accuracy achieved using the kNN algorithm.

/*

/************************************************************************/

void ga_fs01(unsigned vok, Matrix<unsigned> &fmap, Matrix<real> &hist) {

Subscript rt = DataSets::AllData.num_rows();

Subscript ct = DataSets::AllData.num_cols();

Matrix<unsigned> tcc; // class count for

const unsigned BASE = 2; // Configure as a binary GA.

const unsigned LIND = ct-1; // Set the chromosome size.

const unsigned MAXGEN = 20; // Set the maximum number of generations.

unsigned NIND = Shared::PopSize; // Determine the population size.

cout << "Pop size = " << NIND - 1 << endl;

Matrix<unsigned> Chrom; // set of binary chromosomes where each row

// corresponds to a feature mapping

Matrix<unsigned> base = BASE*Matrix<unsigned>(1,LIND,1);

real er; // best overall misclass. rate in a given population

Matrix<real> ObjV; // objective vals for each row item in population

unsigned gen; // current generation number

real mv; // min objective value in a given population

Subscript mi; // index of min objective value

Matrix<real> FitnV; // fitness values for all objective values

Matrix<unsigned> SelCh; // chromosomes selected for recombination

Matrix<real> ObjVSel; // objective vals for items in SelCh

// Tally the number of instances in each class.

tcc =

get_classcnt(appendCols(DataSets::AllData,Matrix<real>(rt,1,0.0)));

// Initialize the population

Chrom = crtbp(NIND,LIND,BASE);

objfun2(vok,tcc,Chrom,er,ObjV);

hist.newsize(MAXGEN,2);

// Start the Generational loop

gen = 1;

while (gen <= MAXGEN) {

cout << "gen = " << gen << endl;

// Assign fitness

FitnV = ranking(ObjV);

// Select individuals for breeding

SelCh = select(GA_Menu::SELF, Chrom, FitnV, GA_Menu::GGAP);

// Recombine individuals (crossover)

SelCh = recombin(GA_Menu::RECF, SelCh,GA_Menu::PCROS);

68



// Apply mutation

SelCh = mut(SelCh,GA_Menu::PMUT,base);

// Evaluate offspring, call objective function

objfun2(vok,tcc,SelCh,er,ObjVSel);

// Reinsert offspring into population

reins(SelCh,ObjVSel,Chrom,ObjV);

// Minimize the average (per class) misclassification rate

mv = minVal(ObjV);

hist(gen,1) = static_cast<real>(gen);

hist(gen,2) = mv;

gen++;

} //while

// Return the best feature set found.

mi = minPos(ObjV);

fmap = mat(Chrom(Index1D(mi,mi),Index1D(1,LIND)));

}

/************************************************************************

/*

/* MODULE NAME: ga_fs02

/* CALLED FROM: gracce_fsel

/* INPUT(S):

/* method - Determines if a forward search or hybrid search

/* (limited fwd search/GA=based search) is utilized.

/* If the hybrid search is chosen, a transition to a

/* GA-based search is made after a limited fwd search.

/* maxext - Determines the percentage of features sought in the

/* limited forward search.

/* vok - Value of k for the kNN algorithm.

/*

/* OUTPUT(S):

/* fmap - List of enabled features in the best solution.

/* hist - (Best) Fitness history of the GA population, where for each

/* row, col 1 = generation number, col 2 = fitness value.

/*

/* DESCRIPTION: This module performs feature selection by using either

/* a full deterministic forward search or a hybrid (limited

/* fwd search/GA-based search) approach. The limited fwd

/* search finds a feature set with which to dope the

/* population for the subsequent GA-based search. Feature

/* set fitness is based on the size of the feature set and

/* its classification accuracy achieved using the kNN

/* algorithm.

/*

/************************************************************************/

/************* Code not modified - removed for brevity *****************/

/************************************************************************
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/*

/* MODULE NAME: gracce_fsel

/* CALLED FROM: gracce_exop

/* INPUT(S): None.

/* OUTPUT(S): None.

/* DESCRIPTION: This module performs the kNN based feature selection

/* process.

/*

/************************************************************************/

void gracce_fsel() {

// PREPROCESSING (1): FEATURE SELECTION (if enabled)

clock_t start, end;

int buff_size = 64000;

// send DataSets::AllData here

Subscript rt = DataSets::AllData.num_rows();

Subscript ct = DataSets::AllData.num_cols();

real buffer[buff_size];

int i, j;

for (i = 1; i <= rt; i++) {

for (j = 1; j <= ct; j++) {

buffer[(j-1) + ((i-1) * ct)] = DataSets::AllData(i,j);

}

}

MPI::COMM_WORLD.Barrier(); // Barrier 1

MPI::COMM_WORLD.Bcast(&rt, 1, MPI::UNSIGNED, 0);

MPI::COMM_WORLD.Bcast(&ct, 1, MPI::UNSIGNED, 0);

for (i = 0; i < (rt * ct); i = i + buff_size) {

if ((i+buff_size) < (rt * ct))

MPI::COMM_WORLD.Bcast(&buffer[i], buff_size*2, MPI::REAL, 0);

else

MPI::COMM_WORLD.Bcast(&buffer[i], (rt*ct - i)*2, MPI::REAL, 0);

}

MPI::COMM_WORLD.Barrier(); // Barrier 2

unsigned sv[2];

sv[0] = Shared::ClassMax;

sv[1] = Shared::ClassMin;

MPI::COMM_WORLD.Bcast(sv, 2, MPI::UNSIGNED, 0);

Matrix<unsigned> fmap; // feature mapping, where 1 = feature is

// enabled, 0 = feature is disabled

Matrix<real> history; // history of

// loop code here for testing purposes only

for (int poploop = 1; poploop <= 20; poploop++) {

Shared::PopSize = poploop+1;

for (int loop = 0; loop < 5; loop++) {
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cout << "Starting Loop " << loop << endl;

start = clock();

// Determine if a data set has been loaded.

if (Shared::DataSetLoaded == 0) {

cerr << "No data set is loaded" << endl;

return;

}

// Initiate the proper feature selection approach.

if (PreprocMenu::fsmth == GA_SRCH) { // GA-based feature selection.

ga_fs01(PreprocMenu::vok,fmap,history);

}

else { // Forward search feature selection.

ga_fs02(PreprocMenu::fsmth,PreprocMenu::maxext,

PreprocMenu::vok,fmap,history);

} //if

// Now output the winnowed data set

ofstream outStream;

char fmapFileName[31];

cout << "Writing out winnowed data set." << endl;

changeFileExtension(MainMenu::FileName,".fsr",fmapFileName);

outStream.open(fmapFileName, ios::out);

printOnlyArray(outStream,fmap);

end = clock();

cout << "Time for Feature Selection: "

<< (static_cast<real>(end-start) / CLOCKS_PER_SEC) << "s"

<< endl;

} // end loop code here

}

int finished = 1;

// tell other processes to exit loop

MPI::COMM_WORLD.Bcast(&finished, 1, MPI::INT, 0);

}
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G GRaCCE Default Inputs

The following is the content of the default input �le, inputs.txt, for GRaCCE. These settings were

used for all experiments in this thesis e�ort.

*** Main Menu ***

Data Profile (1=50/50,2=60/40,3=75/25,4=80/20,5=90/10,6=CVAL-5,7=CVAL-10): 6

Test Fold (1-5 for Data Profile=CVAL-5,1-10 for VAL-10): 1

*** Preprocessing Menu ***

Feature Set Type (0=Full,1=Partial): 0

Value of K (1,2,3,4,5,10,20): 3

Feature Selection Method (0=GA SRCH, 1=FWD SRCH, 2=FWD-GA): 0

Forward Search Extent (any increment of 0.05 from 0.0 to 1.0): 0.2

*** Genetic Algorithms Menu ***

Probability of Crossover (any increment of 0.05 from 0.0 to 1.0): 0.70

Probabilty of Mutation (0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1): 0.1

Reproduction Selection Function (0=sus, 1=rws): 0

Generation Window Size (3,5,10,15,20,25,30,40,50): 10

Recombin. Function (0=xovsp,1=xovdp,2=xovdprs,3=xovmp,4=xovsh,5=xovshrs,

6=xovsprs): 1

Replacement Percentage (0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 3.0): 0.9

Population Size (50,75,100,200,300,500,750,1000): 100

*** Region Identification Menu ***

Percentage of Part. Utilization (any increment of 0.05 from 0.0 to 1.0): 1.0

Region Utility Ratio (0.0, 0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1,

0.2, 0.3): 0.01

Partition Simplification Ratio (any increment of 0.05 from 0.0 to 1.0): 0.10

Sample Size for Covariance Estimate(0,3,5,10,20, where 0=Automatic): 5

Degree of Purity for Regions (any increment of 0.05 from 0.0 to 1.0): 0.80

Partition Simplification Error Threshold (any increment of 0.05 from

0.0 to 1.0): 0.50

Partition Usage (0=Mixed,1=Global Only,2=Local Only): 0

Partition Simplification Method (0=None,1=Training,2=Winnowed,

3=Bpts,4=Wt. Bpts): 4
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